Mathematical Physics Vol 1
7.8 Examples
403
Solution
∞ ∑ n = 1
2 h ℓ 2
n π x 0 ℓ
n π x ℓ
n π at ℓ
u ( x , t )=
sin
sin
cos
.
π 2 x
0 ( ℓ − x 0 )
Problem 265
Find the solution of equation a 2 u
xx = u t , 0 < x < l , 0 ≤ t ,
(7.311)
that satisfies initial
u ( x , 0 )= ϕ ( x )= x ,
0 ≤ x ≤ l 2 ≤ x ≤ l
2 ;
(7.312)
l − x , l
and boundary conditions
u ( 0 , t )= 0 , u ( l , t )= 0 0 ≤ t .
(7.313)
Solution
2 l
d x
l 2 Z 0
l Z l 2
n π x l
n π x l
.
C n =
x sin
d x +
( l − x ) sin
(7.314)
For even values of n the constant C n is equal to zero, and for odd values B n = 4 l n 2 π 2 , za n = 1 , 5 , 9 ,... − 4 l n 2 π 2 , za n = 3 , 7 , 11 ,...
(7.315)
and the final solution is
4 l π 2
+ ... .
π x l
3 π x l
1 9
a π
3 a π
2 t
2 t
e − (
e − (
l )
l )
u ( x , t )=
sin
sin
(7.316)
−
Problem 266 Determine the type of PDE
4 u t = u xx , 0 ≤ x ≤ 2 , t > 0 ,
(7.317)
Made with FlippingBook Digital Publishing Software