Mathematical Physics Vol 1
7.8 Examples
401
and initial conditions
u ( x , 0 )= x , u t ( x , 0 )= 0 .
Solution The solution of the equation is of the form
∞ ∑ n = 1 h
A n cos
at + B n sin
at i sin
∞ ∑ n = 1
π n l
π n l
π n l
u =
u n ( x , t )=
x .
where
n π Z 0
n π Z 0
l Z 0
l Z 0
n π x
n π x l
2 l
2 l
l n π ·
l n π
2 l n 2 π 2
2 l
ϕ ( x ) · sin
A n =
d x =
x · sin
d x =
t sin t ·
d t =
t sin t d t =
l ·
n π
2 l n 2 π 2
2 l n 2 π 2
( sin n π − n π · cos n π − sin0 + 0 · cos0 )=
( sin t − t · cos t ) n π · ( − 1 ) n + 1 =
=
=
0
2 l n 2 π 2 ·
2 l n π ·
= ( − 1 ) n + 1 . The required coefficients are of the form:
l Z 0
l Z 0
n π x l
n π x l
2 l n π ·
2 π an
2 π an
( − 1 ) n + 1 , B
ψ ( x ) · sin
A n =
d x =
0 · sin
d x = 0 .
n =
The solution of the given partial differential equation is of the form
∞ ∑ n = 1
( − 1 ) n + 1 n
an π t
n π x l
2 l π
u ( x , t )=
cos
sin
l ·
.
Problem 262
Find the solution of equation
2 u
u tt = a
xx ,
that satisfies boundary
u ( 0 , t )= 0 , u ( l , t )= 0 , 0 ≤ x ≤ l
and initial conditions
u ( x , 0 )= π − x , u t ( x , 0 )= 0 .
Made with FlippingBook Digital Publishing Software