Mathematical Physics Vol 1
Chapter 7. Partial differential equations
388
Given that this is true for an arbitrary constant c ( c > 0), we shall assume that c = 1, i.e. v = x − 2 y − 3 . Thus, the expression x − 2 y − 3 2 x 3 y − y 2 d x − x − 2 y − 3 2 x 4 + xy d y = 0 represents the total differential of a function u , i.e. d u = x − 2 y − 3 2 x 3 y − y 2 d x − x − 2 y − 3 2 x 4 + xy d y = 0 . (7.301) From here we obtain
y Z y 0
x Z x 0
2 xy − 2 − x − 2 y − 1 d x −
2 x 2 y − 3 + x − 1 y − 2 d y =
u =
= x 2 y − 2 + y − 1 x − 1 x = 2 x 2 y − 2 + 2 x − y − 1 + c .
x 0 − −
x 2 y − 2 − y − 1 x − 1 y y 0
=
Check.
∂ u ∂ x
∂ u ∂ y d y = 4 xy − 2 − 2 x − 2 y − 1 d x + − 4 x 2 y − 3 − 2 x − 1 y − 2 d y ,
d u =
d x +
and, according to (7.301) this is equal to zero, i.e. d u = 0.
Problem 253 Determine the complete solution and singular solution (if it exists) for equation
z = xp + yq + pq .
Solution This is a non-linear partial differential equation. We shall solve it using the Lagrange– Charpit method. We shall us the conditions (7.80). In our case, given that f = xp + yq + pq − z = 0, it follows ∂ f ∂ p = x + q ∂ f ∂ q = y + p ∂ f ∂ x = p ∂ f ∂ y = q ∂ f ∂ z = − 1
and the equation (7.80) becomes d x x + q = d y y + p =
d z xp + yq + pq
d p − p + p
d q − q + q
=
=
that is
d x x + q
d y y + p
d z z
d p 0
d q 0
=
=
=
=
Made with FlippingBook Digital Publishing Software