Mathematical Physics Vol 1
Chapter 7. Partial differential equations
336
Example 233 Let f 1 ( ξ ) and f 2 ( η ) be arbitrary differentiable functions, where ξ = y + ax , and η = y − ax . Determine the partial differential equation, whose solution satisfies the equation z = f 1 ( ξ )+ f 2 ( η ) .
Solution Using the Monge notation, we obtain
∂ f 1 ∂ x ∂ f 1 ∂ y
∂ f 2 ∂ x ∂ f 2 ∂ y
∂ f 1 ∂ξ ∂ f 1 ∂ξ
∂ξ ∂ x ∂ξ ∂ y
∂ f 2 ∂η ∂ f 2 ∂η
∂η ∂ x ∂η ∂ y
∂ z ∂ x ∂ z ∂ y
d f 1 d ξ −
d f 2 d η
= a f ′ 1 − f ′ 2 ,
p =
= a
a
=
+
=
+
d f 1 d ξ
d f 2 d η
= f ′ 1 + f ′ 2 ,
q =
=
+
=
+
=
+
( p )= a
∂ f ′ 2 ∂ x
= a
∂η ∂ x
∂ 2 z ∂ x 2
∂ ∂ x
∂ f ′ 1 ∂ x −
∂ξ ∂ x −
d f ′ 1 d ξ
d f ′ 2 d η
r =
=
=
= a 2 f ′′
′′ 2 ,
1 + f
(7.5)
∂ 2 z ∂ y 2
∂ ∂ y
∂ f ′ 1 ∂ y
∂ f ′ 2 ∂ y
∂ξ ∂ y
∂η ∂ y
d f ′ 1 d ξ
d f ′ 2 d η
t =
( q )=
=
+
=
+
=
= f ′′
′′ 2 .
1 + f
(7.6)
From (7.5) and (7.6) we obtain the required partial differential equation r − a 2 t = 0 .
Example 234 Let a function be given in the form
z = a 2 x 2 + 2 abxy + b 2 y 2 + cx + dy + e ,
where a , b , c , d and e are arbitrary constants. Write the differential equation this function satisfies.
Solution
Made with FlippingBook Digital Publishing Software