Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
296
and thus
x Z 0
x Z 0
α
α
t 0 E 1
I =
2 , 1 ( − t
) dt =
E 2 ( − t
) dt .
Further, given that
∞ ∑ k = 0
∞ ∑ k = 0
∞ ∑ k = 0
( − t 2 ) k Γ ( 2 k + 1 )
( − 1 ) k t 2 k Γ ( 2 k + 1 )
( − 1 ) k ( t 2 ) k ( 2 k ) !
2 )=
E 2 ( − t
= cos t
=
=
the integral I is equal to
x Z 0
x Z 0
2 ) dt =
I =
E 2 ( − t
cos tdt = sin t .
Using the result from Example 208, we obtain x Z 0 E 2 ( − t α
2 )
) dt = xE 2 , 2 ( − x
which is the required result.
Problem 213 Let α > 0. Prove that
2 ) − xE
2 )
E α ( − x )= E 2 α ( x
2 α , α + 1 ( x
is valid for ML functions.
Solution Using the definition for ML functions with one and with two parameters, the right hand side becomes Ω ≡ E 2 α ( x 2 ) − xE 2 α , α + 1 ( x 2 )= ∞ ∑ k = 0 ( x 2 ) k Γ ( 2 α k + 1 ) − x ∞ ∑ k = 0 ( x 2 ) k Γ ( 2 α k α + 1 ) , or in the expanded form Ω = 1 + x 2 Γ ( 2 α + 1 ) + x 4 Γ ( 4 α + 1 ) + x 6 Γ ( 6 α + 1 ) + ··· − − x Γ ( α + 1 ) + x 3 Γ ( 3 α + 1 ) + x 5 Γ ( 5 α + 1 ) + ··· . Grouping the terms next to each power of − x , we obtain Ω = ( − x ) Γ ( α + 1 ) + ( − x ) 2 Γ ( 2 α + 1 ) + ( − x ) 3 Γ ( 3 α + 1 ) + ( − x ) 4 Γ ( 4 α + 1 ) + ( − x ) 5 Γ ( 5 α + 1 ) + ··· = = ∞ ∑ k = 0 ( − x ) k Γ ( k α + 1 ) = E α ( − x ) .
Made with FlippingBook Digital Publishing Software