Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
252
Definition Beta function B ( z , ω ) with respect to two variables z , ω ∈ C is defined by B ( z , ω )=
Γ ( z ) Γ ( ω ) Γ ( z + ω ) .
(5.169)
Figure 5.8: Beta function.
Properties of Beta function Beta function has the following properties. a) For Re ( z ) > 0 , Re ( ω ) > 0 the equation (5.169) is equivalent to
∞ Z 0
1 Z 0
t z − 1 ( 1 + t ) z + ω
ω − 1 d t
t z − 1 ( 1 − t )
B ( z , ω )=
d t =
=
(5.170)
π / 2 Z 0
ω − 1 d t
( sin t ) 2 z − 1 ( cos t ) 2
= 2
.
b) B ( z + 1 , ω + 1 ) is a solution of the Beta integral
1 Z 0
ω d t
t z ( 1 − t )
= B ( z + 1 , ω + 1 ) .
(5.171)
c) The following identities stand
B ( z , ω )= B ( ω , z ) , B ( z , ω )= B ( z + 1 , ω )+ B ( z , ω + 1 ) ,
(5.172)
ω z
ω z + ω
B ( z , ω + 1 )=
B ( z + 1 , ω )=
B ( z , ω ) .
Made with FlippingBook Digital Publishing Software