Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
250
9) For all non-integer values z ∈ C the following is true Γ ( z ) Γ ( 1 − z )= π sin ( π z ) This relation is known as the reflection theorem . 10) For half-integer arguments Γ ( n / 2 ) , n ∈ N has a special form Γ n 2 = ( n − 2 ) !! √ π 2 ( n − 1 ) / 2 i Γ ( z ) Γ ( − z )= −
π z sin ( π z )
(5.153)
.
(5.154)
where n !! denotes the double factorial, defined by n !! =
n · ( n − 2 ) ··· 5 · 3 · 1 , n > 0 , odd n · ( n − 2 ) ··· 6 · 4 · 2 , n > 0 , even 1 , n = 0 , − 1 .
(5.155)
The proof of these properties can be found in [38]. For different values of parameter α , from (5.154), we obtain values for the gamma function shown in the following table
1 2
3 2
5 2
7 2
9 2
11 2
13 2
α
Γ ( α ) √ π 1
2 √ π
3 2 √ π
5 2 √ π
7 2 √ π
9 2 √ π
11 2 √ π
Table 5.1: Some values of the gamma function.
Similarly, bearing in mind the definition of the gamma function, the generalized binomial coefficients can be defined as follows
Definition Generalized binomial coefficients α
k for α ∈ R , k ∈ N 0 , are defined by = α ( α − 1 )( α − 2 ) ··· ( α − k + 1 ) k !
α
k
( − 1 ) k − 1 Γ ( k − α ) Γ ( 1 − α ) Γ ( k + 1 )
(5.156)
=
Combining the ninth and the fourth property we obtain
Γ ( 1 − z ) − z
π sin ( π z )
Γ ( − z ) Γ ( z + 1 )=
Γ ( z ) z = − Γ ( 1 − z ) Γ ( z )= −
(5.157)
,
or more generally, for k ∈ N 0
( − 1 ) k + 1 Γ ( z − k ) Γ ( k + 1 − z )= Γ ( − z ) Γ ( z + 1 ) .
(5.158)
As already pointed out, the gamma function can be expressed as
Γ ( z + n ) z ( z + 1 ) ··· ( z + n − 1 ) .
Γ ( z )=
(5.159)
12 Weierstrass
Made with FlippingBook Digital Publishing Software