Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
242
Figure 5.4: Weber function.
In the special case, for n = 0we obtain
( − 1 ) k
x 2
2 k
∞ ∑ k = 0
Γ ′ ( k + 1 ) Γ ( k + 1 )
2 π
x 2 −
2 π
Y 0 ( x )=
J 0 ( x ) ln
(5.97)
.
( k ! ) 2
The functions J ν and Y ν are linearly independent, and for every ν (integer or not integer) they form the fundamental solution of the initial equation. The general solution can now be represented in the form y = C 1 J ν ( x )+ C 2 Y ν ( x ) , (5.98) where C i ( i = 1 , 2 ) are arbitrary constants. Let us now write some recurrence formulas for the Bessel and Weber functions. J ′ ν ( x )= J ν − 1 ( x ) − ν x J ν ( x ) , (5.99) Y ′ ν ( x )= Y ν − 1 ( x ) − ν x Y ν ( x ) , (5.100) J ′ ν ( x )= − J ν + 1 ( x )+ ν x J ν ( x ) , (5.101) Y ′ ν ( x )= − Y ν + 1 ( x )+ ν x Y ν ( x ) , (5.102) J ν + 1 ( x )= 2 ν x J ν ( x ) − J ν − 1 ( x ) , (5.103) Y ν + 1 ( x )= 2 ν x Y ν ( x ) − Y ν − 1 ( x ) . (5.104) These formulas can be verified by differentiating the Bessel and Weber functions. Let us demonstrate this on the example (5.99)
∞ ∑ k = 0
( − 1 ) k 2 ( ν + k ) x 2 ν + 2 k − 1 2 ν + 2 k k ! Γ ( ν + k + 1 )
d d x
ν J
( x
ν ( x ))=
(5.105)
Further, as Γ ( ν + k + 1 )=( ν + k ) Γ ( ν + k ) , we obtain:
( − 1 ) k 2 k + ν − 1 k ! Γ ( ν − 1 + k + 1 ) , x 2
∞ ∑ k = 0
d d x
ν J
ν
( x
ν ( x ))= x
(5.106)
and according to (5.74)
d d x
ν J
ν J
( x
ν ( x ))= x
(5.107)
ν − 1 .
Made with FlippingBook Digital Publishing Software