Mathematical Physics Vol 1
Chapter 4. Field theory
218
Solution
∂ r ∂ρ ∂ r ∂φ ∂ r ∂ z
x i + y j p x 2 + y 2
= cos φ i + sin φ j ,
∇ ρ =
= cos φ i + sin φ j ,
a)
sin φ i + cos φ j ρ ,
= − ρ sin φ i + ρ cos φ j , ∇ φ = −
∇ z = k
= k ,
∂ r ∂ r = sin θ cos φ i + sin θ sin φ j + cos θ k ∂ r ∂θ = r cos θ cos φ i + r cos θ sin φ j − r sin θ k
b)
∂ r ∂φ
= − r sin θ sin φ i + r sin θ cos φ j
x i + y j + z k p x 2 + y 2 + z 2 xz i + yz j − p x 2 + y 2 k ( x 2 + y 2 + z 2 ) p x 2 + y 2 y i + x j = −
∇ r =
= sin θ cos φ i + sin θ sin φ j + cos θ k
= cos θ cos φ i + cos θ sin φ j − sin θ k r
∇ θ =
sin φ + cos φ r sin θ
∇ φ = −
x 2 + y 2
∂ r ∂ u ∂ r ∂ v ∂ r ∂ z
u i + v j u 2 + v 2
∇ u =
= u i + v j ,
c)
v i + u j
∇ v = −
= − v i + u j ,
,
u 2 + v 2
∇ z = k .
= k ,
Exercise 180 Express the equation
∂ 2 φ ∂ x 2
∂ 2 φ ∂ y 2
= φ in terms of elliptic cylindrical coordinates.
+
Solution
∂ 2 φ ∂ u 2
∂ 2 φ ∂ v 2
= a 2 ( sh 2 u + sin 2 v ) φ
+
Exercise 181 Express Schrodinger’s equation (quantum mechanics) ∇ 2 ψ + 8 π 2 m h ( e − v ( x , y , z ))= 0 .
Made with FlippingBook Digital Publishing Software