Mathematical Physics Vol 1
Chapter 4. Field theory
216
Solution
a) e r = sin θ cos φ i + sin θ sin φ j + cos θ k , e θ = cos θ cos φ i + cos θ sin φ j − sin θ k , e φ = − sin φ i + cos φ j , b) i = sin θ cos φ e r + cos θ cos φ e θ − sin φ e φ , j = sin θ sin φ e r + cos θ sin φ e θ + cos φ e φ , k = cos θ e r − sin θ e θ .
Exercise 173 Express the vector A = 2 y i − z j + 3 x k in spherical coordinates and determine A ρ , A φ , A z .
Solution
A = A r e r + A θ e θ + A φ e φ ,
gde je
2 θ sin φ cos φ − r sin θ cos θ sin φ + 3 r sin θ cos θ cos φ ,
A r = 2 r sin
2 θ sin φ − 3 r 2 sin 2 θ cos φ ,
A θ = 2 r sin θ cos θ sin φ cos φ − r cos
2 φ − r cos θ cos φ .
A φ = − 2 r sin θ sin
Exercise 174 Prove that the following coordinate systems are orthogonal
a) parabolic cylindrical, b) elliptic cylindrical, and c) spheroid.
Exercise 175 Prove that a curvilinear coordinate system is orthogonal iff g pq = 0 for p̸ = q .
Exercise 176 Find the Jacobian J =
∂ ( x , y , z ) ∂ ( u 1 , u 2 , u 3 )
for the following curvilinear systems
a) cylindrical, b) spherical, c) parabolic cylindrical, d) elliptic cylindrical, e) spheroid.
Made with FlippingBook Digital Publishing Software