Mathematical Physics Vol 1
Chapter 4. Field theory
204
i . Given that
where f i , i = 1 , 2 , 3 are unambiguous functions of u
∂ r ∂ u 2
∂ r ∂ u 3
∂ r ∂ u 1
d u 1 +
d u 2 +
d u 3 =
d r =
1 + h
2 + h
3 ,
= h 1 e 1 d u
2 e 2 d u
3 e 3 d u
it follows (see p. 85, (4.26))
1 + h
2 + h
3 .
d φ = ∇ φ · d r = h 1 f 1 d u
2 f 2 d u
3 f 3 d u
(4.224)
On the other hand, the total differential of the scalar function φ ( u i ) is
∂φ ∂ u 1
∂φ ∂ u 2
∂φ ∂ u 3
d u 1 +
d u 2 +
d u 3 .
d φ =
(4.225)
From (4.224) and (4.225) it follows that
∂φ ∂ u 1
∂φ ∂ u 2
∂φ ∂ u 3
1 h 1
1 h 2
1 h 3
f 1 =
f 2 =
f 3 =
(4.226)
,
,
.
Substituting the values (4.226) into (4.223) we obtain
∂φ ∂ u 1
∂φ ∂ u 2
∂φ ∂ u 3
e 2 h 2
e 3 h 3
e 1 h 1
∇ φ =
+
+
=
=
∂ ∂ u 3
∂ ∂ u 1
∂ ∂ u 2
e 1 h 1
e 2 h 2
e 3 h 3
φ .
+
+
Thus, the ∇ operator, in orthogonal coordinates, is
∂ ∂ u 1
∂ ∂ u 2
∂ ∂ u 3
e 1 h 1
e 2 h 2
e 3 h 3
∇ ≡
+
+
.
Exercise 158 Let u 1 , u 2 and u 3 be orthogonal coordinates. Prove that a) | ∇ u p | = h − 1 p , b) e p = E p , p = 1 , 2 , 3.
Solution a) Introducing the substitution φ = u 1 in relations on page 203, we obtain ∇ u 1 =
e 1 h 1
.
The magnitude of this vector is | ∇ u 1 | = | e 1 | h 1 this procedure for φ = u 2 and φ = u 3 yields | ∇ u 2 | = | e 2 | h 2
= h − 1
1 , because | e 1 | = 1. Repeating
= h − 1 2
e 3 | h 3
| ∇ u 3 | = |
= h − 1
3 ,
Made with FlippingBook Digital Publishing Software