Mathematical Physics Vol 1
Chapter 4. Field theory
200
by the following relations
x = x ( u 1 , u 2 , u 3 ) , y = y ( u 1 , u 2 , u 3 ) , z = z ( u 1 , u 2 , u 3 ) , where x ( u i ) , y ( u i ) and z ( u i ) , are continuous functions differentiable by u i , i = 1 , 2 , 3, in a region V , then the total differentials are
∂ x ∂ u 1 ∂ y ∂ u 1 ∂ z ∂ u 1
∂ x ∂ u 2 ∂ y ∂ u 2 ∂ z ∂ u 2 ∂ x ∂ u 2 ∂ y ∂ u 2 ∂ z ∂ u 2
∂ x ∂ u 3 ∂ y ∂ u 3 ∂ z ∂ u 3
d u 1 +
d u 2 +
d u 3 ,
d x =
d u 1 +
d u 2 +
d u 3 ,
d y =
d u 1 +
d u 2 +
d u 3 ,
d z =
or in matrix form
∂ x ∂ u 3 ∂ y ∂ u 3 ∂ z ∂ u 3 ∂ x ∂ u 3 ∂ y ∂ u 3 ∂ z ∂ u 3
∂ x ∂ u 1 ∂ y ∂ u 1 ∂ z ∂ u 1 ∂ x ∂ u 1 ∂ y ∂ u 1 ∂ z ∂ u 1
d x d y d z
=
.
d u 1 d u 2 d u 3
The square matrix
∂ x ∂ u 2 ∂ y ∂ u 2 ∂ z ∂ u 2 is the variable transformation matrix. Its determinant is the so called functional determinant or Jacobian,, symbolically denoted by ∂ ( x , y , z ) ∂ ( u 1 , u 2 , u 3 ) . The elements of this determinant can be related to the tangent base vectors of the coordinate axes ∂ r ∂ u i = ∂ ∂ u i ( x i + y j + z k )= ∂ x ∂ u i i + ∂ y ∂ u i j + ∂ z ∂ u i k . As a mixed product can be expressed in terms of a formal determinant (see Example 15, p. 64), it follows that the functional determinant is equal to the mixed product ∂ x ∂ u 1 ∂ y ∂ u 1 ∂ z ∂ u 1 ∂ x ∂ u 2 ∂ y ∂ u 2 ∂ z ∂ u 2 ∂ x ∂ u 3 ∂ y ∂ u 3 ∂ z ∂ u 3 = ∂ r ∂ u 1 · ∂ r ∂ u 2 × ∂ r ∂ u 3 . (4.222) J =
Made with FlippingBook Digital Publishing Software