Mathematical Physics Vol 1
Chapter 4. Field theory
192
If we first square and then add equations (4.215) and (4.216), we obtain ρ 2 ( cos 2 ϕ + sin 2 ϕ )= x 2 + y 2 , that is, ρ = p x 2 + y 2 . Here we used the basic trigonometric identity cos 2 ϕ + sin 2 ϕ = 1 and the fact that ρ , by definition (distance), is positive. Dividing the left and right side of equation (4.216) by equation (4.215) yields
ρ sin ϕ ρ cos ϕ = tan ϕ , that is, ϕ = arctan y x . From here follow the transformations
y x
=
ρ = p x 2 + y 2 ϕ = arctan
y x
z = z .
Exercise 144 Show that the cylindric coordinate system is orthogonal.
Solution The position vector is
r = x i + y j + z k = ρ cos ϕ i + ρ sin ϕ j + z k . The tangent vectors, which correspond to coordinates ρ , ϕ , z are determined by
∂ r ∂ρ
,
∂ r ∂ϕ
∂ r ∂ z
and
, that is
∂ r ∂ρ ∂ r ∂ϕ
= cos ϕ i + sin ϕ j ,
= − ρ sin ϕ i + ρ cos ϕ j ,
∂ r ∂ z
= k . The corresponding unit vectors are e 1 = e ρ = ∂ r / ∂ρ | ∂ r / ∂ρ | =
cos ϕ i + sin ϕ j q cos 2 ϕ + sin 2 ϕ ρ sin ϕ i + ρ cos ϕ j q ρ 2 cos 2 ϕ + ρ 2 sin 2 ϕ
= cos ϕ i + sin ϕ j ,
∂ r / ∂ϕ | ∂ r / ∂ϕ | ∂ r / ∂ z | ∂ r / ∂ z |
= −
= − sin ϕ i + cos ϕ j ,
e 2 = e ϕ =
(4.218)
e 3 = e z =
= k .
and thus
e 1 · e 2 =( cos ϕ i + sin ϕ j ) · ( − sin ϕ i + cos ϕ j )= 0 , e 1 · e 3 =( cos ϕ i + sin ϕ j ) · k = 0 , e 2 · e 3 =( − sin ϕ i + cos ϕ j ) · k = 0 .
Made with FlippingBook Digital Publishing Software