Mathematical Physics Vol 1
Chapter 4. Field theory
188
Solution
− 8 π .
Exercise 131 Calculate the itegral
I c ( x 2 − 2 xy ) d x +( x 2 y + 3 ) d y , if the boundary of the region is defined by the intersection of the lines y 2 = 2 x and x = 2: a) directly, b) using Green’s theorem.
Solution
128 / 5.
Exercise 132 Calulate the integral
Z c ( 6 xy − y 2 ) d x +( 3 x 2 − 2 xy ) d y , along the cycloid c , defined by x = θ − sin θ , y = 1 − cos θ , from point A ( 0 , 0 ) topoint B ( π , 2 ) .
Solution
6 π 2 − 4 π .
Exercise 133 Show that the surface
A = x R
d x d y ,
after the transformation x = x ( u , v ) and y = y ( u , v ) , is given by
∂ x ∂ u ∂ x ∂ v
∂ y ∂ u ∂ y ∂ v
A = x R
∂ ( x , y ) ∂ ( u , v ) ≡
J d u d v ,
gde je J =
,
J - Jacobian of the transformation.
Made with FlippingBook Digital Publishing Software