Mathematical Physics Vol 1
4.6 Examples
169
parametric form x = t 2 , y = 2 t , z = t 3 . Time changes in the interval t ∈ [ 0 , 1 ] . Calculate the following line integrals a) R c φ d r , b) R c F × d r .
Solution a) Let us express φ by means of parameter t :
φ = 2 xyz 2 = 2 ( t 2 )( 2 t )( t 3 ) 2 = 4 t 9 .
Given that
r = x i + y j + z k , it follows that d r , expressed by means of t is d r = 2 t i + 2 j + 3 t 2 k d t . It further follows Z c φ d r = 1 Z 0 4 t 9 ( 2 t i + 2 j + 3 t 2 k ) d t =
1 Z 0
1 Z 0
1 Z 0
8 11
4 5
8 t 10 d t + j
8 t 9 d t + k
12 t 11 d t =
= i
i +
j + k .
b) Analogously to the result under a)
F = xy i − z j + x 2 k ⇒ F = 2 t 3 i − t 3 j + t 4 k .
Then F × d r =( 2 t 3 i − t 3 j + t 4 k ) × ( 2 t i + 2 j + 3 t 2 k ) d t =
i k 2 t 3 − t 3 t 4 2 t 2 3 t 2 j
=[( − 3 t 5 − 2 t 4 ) i +( 2 t 5 − 6 t 5 ) j +( 4 t 3 + 2 t 4 ) k ] d t
=
1 Z 0
1 Z 0
1 Z 0
Z c
( − 3 t 5 − 2 t 4 ) d t + j
( 2 t 5 − 6 t 5 ) d t + k
( 4 t 3 + 2 t 4 ) d t =
F × d r = i
9 10
2 3
7 5
i −
j +
k .
= −
Made with FlippingBook Digital Publishing Software