Mathematical Physics Vol 1
4.6 Examples
167
Exercise 103 Let F = F 1 i + F 2 j + F 3 k . a) prove that the necessary and sufficient condition for F 1 d x + F 2 d y + F 3 d z tobe a total differential is ∇ × F (= rot F )= 0 . b) Prove that ( y 2 z 3 cos x − 4 x 3 z ) d x + 2 z 3 y sin x d y +( 3 y 2 z 2 sin x − x 4 ) d z is the total differential of some function φ . Find that function.
Solution a) The condition is necessary. If
∂φ ∂ x
∂φ ∂ y
∂φ ∂ z
F 1 d x + F 2 d y + F 3 d z = d φ =
d x +
d y +
d z ,
is the total differential of a function φ ( x , y , z ) , it follows that
∂φ ∂ x
∂φ ∂ y
∂φ ∂ z
F 1 =
F 2 =
F 3 =
,
,
,
and thus
∂φ ∂ x
∂φ ∂ y
∂φ ∂ z
k = ∇ ϕ .
F = F 1 i + F 2 j + F 3 k =
i +
j +
According to (see (4.69), p. 98)
∇ × F = ∇ × ∇ φ = 0 . The condition is sufficient. If ∇ × F = 0, then F = ∇ ϕ . It follows that F · d r = ∇ ϕ · d r = d ϕ (see Example 100 on p.163). b) Let F =( y 2 z 3 cos x − 4 x 3 z ) i + 2 z 3 y sin x j +( 3 y 2 z 2 sin x − x 4 ) k . Given that, in this case ∇ × F = 0, then according to the condition under a), there exists a function φ such that
∂φ ∂ x
∂φ ∂ y
∂φ ∂ z
d φ =
d x +
d y +
d z = F 1 d x + F 2 d y + F 3 d z ,
that is
( y 2 z 3 cos x − 4 x 3 z ) d x + 2 z 3 y sin x d y +( 3 y 2 z 2 sin x − x 4 ) d z = d φ .
It can be proved, analogously to the Example 101 on p.164, that φ = y 2 z 3 sin x − x 4 z + const .
Made with FlippingBook Digital Publishing Software