Mathematical Physics Vol 1
Chapter 4. Field theory
162
Thus, the integral A 12 depends on the start and end point of the path, but not on the path between these points itself. b) Let F = F 1 i + F 2 j + F 3 k . Then the integral along the curve c , between points P 1 ( x 1 , y 1 , z 1 ) and P ( x , y , z ) , is
( x , y , z ) Z ( x 1 , y 1 , z 1 )
( x , y , z ) Z ( x 1 , y 1 , z 1 )
φ ( x , y , z )=
F · d r =
F 1 d x + F 2 d y + F 3 d z .
From here it follows
( x + ∆ x , y , z ) Z ( x 1 , y 1 , z 1 )
( x , y , z ) Z ( x 1 , y 1 , z 1 )
φ ( x + ∆ x , y , z ) − φ ( x , y , z )=
F · d r −
F · d r =
( x + ∆ x , y , z ) Z ( x 1 , y 1 , z 1 )
( x 1 , y 1 , z 1 ) Z ( x , y , z ) ( x + ∆ x , y , z ) Z ( x , y , z )
F · d r +
F · d r =
=
( x + ∆ x , y , z ) Z ( x , y , z )
F · d r =
F 1 d x + F 2 d y + F 3 d z .
=
Since the last integral, according to the assumption, does not depend on the path between the points with coordinates ( x , y , z ) and ( x + ∆ x , y , z ) , we can choose a straight line that passes through these two points as the path, so that d y = d z = 0 (the line is parallel to the x axis, see Figure 4.29b). Then
(a) Work along the x axis.
(b) Work from point P 1 topoint P 2 .
Figure 4.29
( x + ∆ x , y , z ) Z ( x , y , z )
φ ( x + ∆ x , y , z ) − φ ( x , y , z )=
F 1 d x .
From here we obtain
( x + ∆ x , y , z ) Z ( x , y , z )
φ ( x + ∆ x , y , z ) − φ ( x , y , z ) ∆ x
1 ∆ x
F 1 d x .
(4.187)
=
Made with FlippingBook Digital Publishing Software