Mathematical Physics Vol 1
4.6 Examples
135
Solution
∇ × V =
∂ ∂ z k × ( xz 3 i − 2 x 2 yz j + 2 yz 4 k )=
∂ ∂ x
∂ ∂ y
i +
j +
i
j
k
∂ ∂ x ∂ ∂ z xz 3 − 2 x 2 yz 2 yz 4 ∂ ∂ y
=
=
=
∂ z
i + +
∂ x
∂ ( − 2 x 2 yz )
∂ ( xz 3 )
∂ ( 2 yz 4 )
∂ ( 2 yz 4 )
j +
∂ y −
∂ z −
∂ y
∂ ( − 2 x 2 yz ) ∂ x
∂ ( xz 3 )
k =
−
=( 2 z 4 + 2 xz ) i +( 3 xz 2 ) j − ( 4 xyz ) k .
For point A ( 1 , − 1 , 1 ) we obtain ∇ × V A
= 3 j + 4 k .
Exercise 64 Observe the expression ∇ · ( V × W ) . a) Prove that
∇ · ( V × W )=( ∇ × V ) · W − V · ( ∇ × W ) . b) Find the value for the expression if W = r and ∇ × V = 0. c) Prove that, if V and W are irrotational (potential) fields, then the field obtained as their vector product is solenoidal (rotational). d) It follows from b) and c) that the vector field of a vector product of a position vector and any irrotational vector field is a solenoidal field. Prove this statement. e) The vector field of a vector product of a position vector and a conservative force is always a solenoidal field. Prove this statement.
Solution a) Given that
∂ ∂ x V x
∂ ∂ y V y
∂ ∂ z
∇ · ( V × W )=
=
V z W x W y W z
(4.159)
∂ ∂ x
∂ ∂ y
∂ ∂ z
( V y W z − V z W y )+
( V z W x − V x W z )+
( V x W y − V y W x ) ,
=
after differentiating and grouping, we obtain W x ∂ V z ∂ y − ∂ V y ∂ z + W y ∂ V x ∂ z − ∂ V z ∂ x
+ W z
∂ V x ∂ y − ∂ y . ∂ W x
∂ V y ∂ x −
(4.160)
− V x
∂ z −
V y
∂ W z ∂ x −
V z
∂ W y
∂ W y
∂ W z
∂ W x
∂ y −
∂ z −
∂ x −
Made with FlippingBook Digital Publishing Software