Issue 68
Z. Moqadaszadeh et alii, Frattura ed Integrità Strutturale, 68 (2024) 186-196; DOI: 10.3221/IGF-ESIS.68.12
[14] Awaji, H., Sato, S. (1978). Combined mode fracture toughness measurement by the disk test, J. Eng. Mater. Technol. Trans. ASME, 100(2), pp. 175–182, DOI: 10.1115/1.3443468. [15] Chang, S.H., Lee, C.I., Jeon, S. (2002). Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens, Eng. Geol., 66(1–2), pp. 79–97, DOI: 10.1016/S0013-7952(02)00033-9. [16] Khan, K., Al-Shayea, N.A. (2000). Effect of specimen geometry and testing method on mixed Mode I-II fracture toughness of a limestone rock from Saudi Arabia, Rock Mech. Rock Eng., 33(3), pp. 179–206, DOI: 10.1007/s006030070006. [17] Aliha, M.R.M., Ashtari, R., Ayatollahi, M.R. (2006).Mode I and mode II fracture toughness testing for a coarse grain marble. Applied Mechanics and Materials, 5–6, pp. 181–188. [18] Torabf, A.R., Berto, F. (2014). Mixed mode fracture assessment of U-notched graphite Brazilian disk specimens by means of the local energy, Struct. Eng. Mech., 50(6), pp. 723–740, DOI: 10.12989/sem.2014.50.6.723. [19] Lim, I.L., Johnston, I.W., Choi, S.K., Boland, J.N. (1994). Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 2-mixed-mode, Int. J. Rock Mech. Min. Sci., 31(3), pp. 199–212, DOI: 10.1016/0148-9062(94)90464-2. [20] Ayatollahi, M.R., Aliha, M.R.M., Hassani, M.M. (2006). Mixed mode brittle fracture in PMMA - An experimental study using SCB specimens, Mater. Sci. Eng. A, 417(1–2), pp. 348–356, DOI: 10.1016/j.msea.2005.11.002. [21] Ayatollahi, M.R., Aliha, M.R.M., Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture, Eng. Fract. Mech., 78(1), pp. 110–123, DOI: 10.1016/j.engfracmech.2010.10.001. [22] Kuruppu, M.D., Chong, K.P. (2012). Fracture toughness testing of brittle materials using semi-circular bend (SCB) specimen, Eng. Fract. Mech., pp. 133–50, DOI: 10.1016/j.engfracmech.2012.01.013. [23] Li, Y., Pavier, M.J., Coules, H. (2020).A new specimen for mixed mode I/II fracture of brittle and quasi-brittle materials. Procedia Structural Integrity, 28, pp. 1140–7. [24] Li, Y., Pavier, M.J., Coules, H. (2021). Mixed-mode brittle fracture test of polymethylmethacrylate with a new specimen, Fatigue Fract. Eng. Mater. Struct., 44(4), pp. 1027–1040, DOI: 10.1111/ffe.13411. [25] Williams, M.L. (1957). On the Stress Distribution at the Base of a Stationary Crack, J. Appl. Mech., 24(1), pp. 109–114, DOI: 10.1115/1.4011454. [26] Schmidt, R.A. (1980).A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. 21st U.S. Symposium on Rock Mechanics, USRMS 1980, pp. 581–90. [27] Fowell, R.J., Hudson, J.A., Xu, C., Chen, J.F., Zhao, X. (1995). Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens, Int. J. Rock Mech. Min. Sci., pp. 57– 64, DOI: 10.1016/0148-9062(94)00015-U. [28] Li, D., Wong, L.N.Y. (2013). The brazilian disc test for rock mechanics applications: Review and new insights, Rock Mech. Rock Eng., 46(2), pp. 269–287, DOI: 10.1007/s00603-012-0257-7. [29] Aliha, M.R.M., Ayatollahi, M.R., Akbardoost, J. (2012). Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock material, Rock Mech. Rock Eng., 45(1), pp. 65–74, DOI: 10.1007/s00603-011-0167-0. [30] Mirsayar, M.M., Razmi, A., Aliha, M.R.M., Berto, F. (2017). EMTSN criterion for evaluating mixed mode I / II crack propagation in rock materials, Eng. Fract. Mech., DOI: 10.1016/j.engfracmech.2017.12.014. [31] Moghaddam, M.R., Ayatollahi, M.R., Berto, F. (2017). Mixed Mode Fracture Analysis Using Generalized Averaged Strain Energy Density Criterion for Linear Elastic Materials, Int. J. Solids Struct., DOI: 10.1016/j.ijsolstr.2017.04.035.
196
Made with FlippingBook Digital Publishing Software