Issue 59

T. Djedid et alii, Frattura ed Integrità Strutturale, 59 (2022) 580-591; DOI: 10.3221/IGF-ESIS.59.38

[16] EN 12390-5. (2000). Essai pour béton durci – Partie 5: résistance à la flexion sur éprouvettes. Institut de normalisation, Serbie. [17] Association Francaise Génie Civil. GranDuBé. (2007). Grandeurs associées à la Durabilité des Bétons, France, Presses de l'école nationale des Ponts et chaussées, 1, 437 p. [18] Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. (2013). USA, ASTM International, West Conshohocken, PA. DOI: 10.1520/C0642-13. [19] Hudson B. P. (1999). Progress- ICAR project 102- Increasing fines in Portland Cement Concrete, ICAR 7th Annual Symposium. http://www.engr.utexas.edu/icar/publications/index.cfm. [20] Djedid, T., Guettala, A. and Mani, M. (2019). Study of the workability and mechanical strength of concrete in the face of upwelling (Case of the El Oued region of Algeria. J. Fundam. Appl. Sci., 11(1), pp. 368-384. DOI: 10.4314/jfas.v11i1.24. [21] Quiroga, P. N., Ahn, N. and Fowler, D. W. (2006). Concrete Mixtures with High Microfines, ACI Materials Journal, 103 (4), pp. 258-264. [22] Sadhouari, F., Goufi, N. and Guezzouli, A. (2009). Valorisation de l’utilisation des sables concassés par analyse des propriétés des mortiers et bétons. 1st International Conférence SBEIDCO., ENSET Oran, Algeria, pp. 247-254 . [23] Ahn, N. (2000). An Experimental Study on the Guidelines for Using Higher Contents of Aggregate Microfines in Portland Cement Concrete, International Center for Aggregates Research, Research Report ICAR 102-1F, University of Texas, Austin. http://www.engr.utexas.edu/icar/publications/index.cfm. [24] Ahn, N., Phelan, T., Fowler, D. W. and Hudson, B. P. (2001). The Effects of High- Fines on the Properties of Cement Mortar and Concrete, ICAR 9th Annual Symposium. http://www.engr.utexas.edu/icar/publications/index.cfm. [25] Ahn, N. and Fowler, D. W. (2002). The Effects of High Fines on the Properties of Concrete, ICAR 10th Annual Symposium. http://www.engr.utexas.edu/icar/publications/index.cfm. [26] Nisnevich, M., Sirotin, G. and Eshel, Y. (2003). Light weight concrete containing thermal power station and stone quarry waste, Magazine of Concrete Research, 55 (4), pp. 313-320. [27] Celik, T. and Marar, K. (1996). Effects of crushed stone dust on some properties of concrete, Cement Concrete Res., 26 (7), pp. 1121-1130. [28] Topçu, B. and U ğ urlu, A. (2003). Effect of the use of mineral filler on the properties of concrete, Cement and concrete research, 33 (7), pp. 1071-1075. DOI: 10.1016/S0008-8846(03)00015-2. [29] Joudi, I., Lecomte, A. Ben-Ouezdou, M. (2011). Influence des sables de concassage à différents taux de filler sur les performances mécaniques des bétons. Séminaire International, Innovation et Valorisation En Génie Civil et Matériaux De Construction, Rabat, Maroc. [30] Alshahwany, R.B.A. (2011). Effect of Partial Replacement of Sand with Limestone Filler on Some Properties of Normal Concrete, Al-Rafidain Engineering Journal, 19 (3), pp. 37-48. DOI: 10.33899/rengj.2011.27014. [31] Syam Prakash, V., Dhanya, K. and Jeenu, G. (2007). Influence of fine stone dust on high strenght concrete. 32 nd Conference on our world in concrete & structures, Singapore. [32] Menadi, B., Kenai, S., Khatib, J. and A ї t-Mokhtar, A. (2009). Strength and durability of concrete incorporating crushed limestone sand, Construction and Building Materials, 23 (2), pp. 625–633. DOI: 10.1016/j.conbuildmat.2008.02.005. [33] Benachour, Y. (2009). Analyse de l’influence de l’ajout de taux élève de fillers calcaire sur les propriétés physique, mécaniques, microstructurales, de transfert et de durabilité des mortiers. Thèse de doctorat. Université de Mentouri constantine. 148p.

591

Made with FlippingBook Digital Publishing Software