Issue 59
A. Houari et alii, Frattura ed Integrità Strutturale, 59 (2022) 212-231; DOI: 10.3221/IGF-ESIS.59.16
R EFERENCES
[1] Hirai, T. (1991). Fabrication and Properties of Functionally Gradient Materials, Journal STAGE., 99 (1154), pp. 1002 1013. DOI: 10.2109/jcersj.99.1002. [2] Watanabe, Y., Inaguma, Y. and Sato, H. (2009). A novel fabrication method for functionally graded materials under centrifugal force: the centrifugal mixed-powder method, Materials., 2(4), pp.2510–2525. DOI:10.3390/ma2042510. [3] Mehdi, G. and Hamed, G. (2014). Displacements and stresses in pressurized thick FGM cylinders with exponentially varying properties based on FSDT, Journal Structural Engineering and Mechanics., 51(6), pp.939-953. DOI:10.12989/sem.2014.51.6.939. [4] Kerimcan, C., Durmus, Y. and Ibrahim, K.(2016). A unified method for stresses in FGM sphere with exponentially varying properties, Structural Engineering and Mechanics., 57(5), pp.823-835. DOI:10.12989/sem. 2016.57.5.823. [5] Abdelhakim, K., Khalil, B., Abdelouahed, T. and El Abbes, B.(2014). Nonlinear cylindrical bending analysis of E-fgm plates with variable thickness, Steel and Composite Structures., 16(4), pp.339-356. DOI: 10.12989/ scs.2014.16.4.339. [6] Chih-Ping,W. and Yan-Cheng, L. (2016). A state space meshless method for the 3D analysis of fgm axisymmetric circularplates, Steel and Composite Structures., 22(1), pp.161-182. DOI:10.12989/scs.2016.22.1.161. [7] Bich, D.H., Ninh, D.G. and Tran, I.T. (2016).Non-linear buckling analysis of FGM toroidal shell segments filled inside by an elastic medium under external pressure loads including temperature effects, Composites Part B. Engineering., 87, pp.75-91. DOI:10.1016/j.compositesb.2015.10.021. [8] Kordkheili, S.A.H., Naghdabadi, R. (2007). Thermoelastic analysis of a functionally graded rotating disk, Composite Structures.,79(4), pp. 508–516. DOI:10.1016/j.compstruct.2006.02.010. [9] Safari, A., Tahani, M ., Hosseini.(2011). Two-dimensional dynamic analysis of thermal stresses in a finite-length FG thick hollow cylinder subjected to thermal shock loading using an analytical method, Acta. Mech., 220(1-4), pp. 299 314. DOI:10.1007/s00707-011-0478-y. [10] Sharma, S., S, Yadav., R, Sharma. (2017). Thermal Creep Analysis of Functionally Graded Thick- Walled Cylinder Subjected to Torsion and Internal and External Pressure, Journal of Solid Mechanics., 09(2), pp. 89-98. DOI: 10.22059/JCAMECH.2017.233633.143. [11] You, L.H., Zhang, J.J., You, X.Y. (2004). Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials, International Journal of Pressure Vessels and Piping., 82(5), pp.347–354. DOI:10.1016/j.ijpvp.2004.11.001. [12] Foroutan, M., R, Moradi. and R, Sotoodeh-Bahreini. (2011). Static analysis of FGM cylinders by a mesh-free method, Steel and Composite Structures., 12(1), pp. 1-11. DOI:10.12989/scs.2011.12.1.001. [13] Gharooni, H., Ghannad, M., and Nejad, M.Z. (2016). Thermo-Elastic Analysis of Clamped-Clamped Thick FGM Cylinders by Using Third-Order Shear Deformation Theory, Latin American Journal of Solids and Structures., 13(4), pp. 750-774. DOI:10.1590/1679-78252254. [14] Ahmet, N.E. (2007). Stresses in FGM pressure tubes under non-uniform temperature distribution, Structural Engineering and Mechanics., 26(4), pp. 393-408. DOI:10.12989/sem.2007.26.4.393. [15] Ghannad et al. (2012). Elastic analysis of exponential FGM disks subjected to internal and external pressure, Open Engineering., 03(3), pp. 459-465. DOI:10.2478/s13531-013-0110-0. [16] Chen, Y.Z. (2018). Transfer matrix method for solution of FGMs thick-walled cylinder with arbitrary inhomogeneous elastic response, Smart Structures and Systems., 21(4), pp. 469-477. DOI: 10.12989/sss.2018.21.4.46. [17] Bayat, Y., Ghannad, M. and Torabi, H. (2012). Analytical and numerical analysis for the FGM thick sphere under combined pressure and temperature loading, Arch Appl Mech., 82, pp. 229–242. DOI:10.1007/s00419-011-0552-x. [18] Carrera, E., Brischetto, S. and Robaldo, A. (2008). Variable Kinematic Model for the Analysis of Functionally Graded Material plates, AIAA Journal., 46(1), pp. 194–203. DOI:10.2514/1.32490. [19] Cinefra, M., Carrera, E. and Brischetto, S. (2010). Analyse thermomécanique des coquilles fonctionnellement calibrées, Journal of Thermal Stresses., 33(10), pp. 942–963. DOI :10.1080/01495739.2010.482379. [20] Bachir, B., Mohammed, S., Ah, H. and Abdelouahed, T. (2013). Thermomechanical bending response of fgm thick plates resting on Winkler-Pasternak elastic foundations, Steel and Composite Structures., 14(1), pp. 85-104. DOI: 10.12989/scs.2013.14.1.085. [21] Otbi, B., Khalil, B., Abdelouahed, T. and El Abbes, A.B. (2015). Numerical analysis of fgm plates with variable thickness subjected to thermal buckling, Steel and Composite Structures., 19 (3), pp. 679-695.
229
Made with FlippingBook Digital Publishing Software