Issue 59

H.A. Mobaraki et alii, Frattura ed Integrità Strutturale, 59 (2022) 198-211; DOI: 10.3221/IGF-ESIS.59.15

         x u w z x

w

0

xz

x

         y v w z y

w

0

yz

y

where  x ,  , y and  xy denote the normal and shear strains of an arbitrary point, respectively. Furthermore,  0 x ,  0 y , and  0 xy are the mid-plane strains, and x k , y k and xy k are the bending curvatures.

Figure 1: Laminated composite plate under the action of a moving vehicle

According to the transformed constitutive relations for a 2D orthotropic lamina, the stress-strain relations for the k th lamina can be written as [24]:

  k

  k

  k

            x y xy 

          x y xy 

    

    

11 Q Q Q Q Q Q Q Q Q 12 12 22

  k

  k

  k

16

      yz xz

        yz xz

  

  

44 Q Q Q Q 45

45

,

(3)

   

26

55

16

26

66

where ij Q is the reduced stiffness. The strain energy of the laminated composite plate is:

h

1 2

    2 0 0 a b

    k k

    k k

    xy

 

    k yz

  k

    k xz

  k

k k

  x x

 

U

dz dy dx

(4)

(

)

P

y

y

xy

yz

xz

h

2

Substituting Eqn.3 into Eqn.4 and then integrating over the thickness leads to:

 0 0 U 1 [   P a b

2

2

2

  2

2

2

 A u A v 11 0, 22 0, x

 D D  11 , x x

66 0, A u v y

0, u v

2

y

x

0, y x

y y

0,

22 ,

2

2

2

2

  2

      2 x y y x , x y , y x , ,

 A w

 B u v  16 , 0, 2 x x y

D

w

2

y

y

y

y

x

66

44

0,

0,

0,

2

  2

 A w

 A u v u 16 0, 0, y x

w

12 0, A u v

2

2 2

2

x

x

0, x x

0, x y

x

55

0,

0,

 B u 11 ,

 B u 12 , y y

   x y ,

 u v 0, y

B

u

B

2 2

2

2

(5)

0, x x x

x

, y x

x

y y

x

0,

16

0,

26 ,

0,

 A u v v 26 0, 0, y x

 B v 12 ,

 B v 22 , y y

   x y ,

B

v

2

2

2

y

0, x x y

y

, y x

y

0,

0,

26

0,

200

Made with FlippingBook Digital Publishing Software