Issue 47
V. Rizov, Frattura ed Integrità Strutturale, (2047) 468-481; DOI: 10.3221/IGF-ESIS.47.37
ai y y and 1
0 z in (18), one obtains
By substituting of 1
1
m
1 i
i
i
i
1 i
y
cos
0
(19)
i
ai i
where
E
d
(20)
1 i
i
m
H
i
i
E
f
(21)
1 i
i
m
H
i
i
i
(22)
y
y
2
1 1 i
i
1
y
i
1
i
(23)
y
y
2
1 1 i
i
1
ai y y and 1
0 z in the first derivative of (18) with respect to 1
y , one arrives at
Further, by substituting of 1
i m
1
1
i
1
1 ) i i m
m
2
i i
i
i
i
1 i
2
y
y
sin(
cos
0
(24)
i
i
ai i
ai i
i
m
i
ai y y and 1
0 z in the first derivative of (18) with respect to 1
z , one obtains
Similarly, by substituting of 1
m
1
i
1
m
1 1 cos( E E y di f
i
3
i
i
i
1 i
3
y
(25)
)
cos
i
ai i
i
ai i
i
m
i
i
ai y y and 1
0 z in the second derivatives of (18) with respect to 1 y , 1
y and 1
z , and 1 z ,
Further, by substituting of 1
one arrives at
m
m
1
1
1
i
i
1
1
1 ) i i m
m
m
2
4
i i
i i
i
1 i
2
i i
i
1 i
y
y
y
2
cos(
sin(
)
sin(
)
i
i
i
i
ai i
ai i
i
ai i
m
m
i
i
(26)
1 2
m
m
1
i
i
m
m
1
1
m
m
i
i
2 i
i
i
1
2
2
i
i
1 i
4
y
y
cos
cos
0
i
i
ai i
i
i
i
ai i
i
2
m
i
i
m
1
i
1
m
1
sin( E y f i
5 ) i i
i i
i
1 i
3
y
sin(
)
i
ai i
ai i
i
m
i
i
(27)
1 2
m
m
1
i
i
m
1
1
,
m
m
i
i
i
i
1 i
3 2 i
5
y
cos
i
i
ai i
i
i
i
1
m
m
i
i
474
Made with FlippingBook Publishing Software