Issue 37

E. Mihailov et alii, Frattura ed Integrità Strutturale, 37 (2016) 297-304; DOI: 10.3221/IGF-ESIS.37.39

From the published models[1-3] for the analysis of heat transfer process in the work area of the electric arc steelmaking furnaces(EASF) using the water cooling elements two ways are used: 1. Outer heat transfer at stationary heat conduction of the wall, roof and metal at which the electric arc can be taken as a point energy source. 2. Outer and inner heat transfer on the basis of immediately heat balance of the whole system. The heat balance of the working area of EASF can be given with the equation [2]: (1) In the heat exchange description, the chamber space of the secondary steelmaking electric arc furnaces (Fig. 1) was reduced to two surfaces (F sum =F m +F w-f and F c.el ) forming a closed space. el w g el c m a . QQQ QQP      ,

F c.el

F m

F w-f

D

F c

l

.el

h

F sum

Ar

Figure 1: Ladle furnace scheme and heat transfer areas.

Scheme of the heat balance and different heat flows in water-cooled element is presented on Fig. 2.

el c .

 in T T

w out w w w 

mC Q 

0,14

  

  

w 

.

el c

0,8 Pr 0,027Re

0,33

w

 

out

in

T

T

 2 out w T T T  

w

D

s 

in w w

w

w

p

D

p

  in Q m  . w out w ww elc

F m  v

  

  

 

 

T T C

pipe of cooled elements insulation

wc

  r

 QT T ins el c .

. .

el c

r

r

ins

el c

el c .

elc .

w r T T

  

ins QT T   .

c ins

r  

r

Q

ins

r

ins Q Q Q Q .    el c r r el c

1

 

.

el c

.

el c

abs

own

 

 

. .

ins ins

el c el c

ins

ins

4

. . T Q Q   .  l el c el c el c .

  

  

w

r

ins

.

.

el c

100

  

 

1

 

 

r Q T  elc .

T

 



. .

ins

el c



r

w

ins

el c

w

 l Q

. 1 

Q



.

refl

el c el c

l

Q

.

el c

 4

. 

100

Q

T

.

own

r elc

Figure 2 : Scheme of the heat balance and different heat flows in water-cooled.

298

Made with FlippingBook Annual report