PSI - Issue 46

T.J. Gschwandl et al. / Procedia Structural Integrity 46 (2023) 17–23 T.J. Gschwandl et al. / Structural Integrity Procedia 00 (2021) 000–000

23

7

Acknowledgements The authors gratefully acknowledge the financial support under the scope of the COMET program within the K2 Center Integrated Computational Material, Process and Product Engineering (IC-MPPE)” (Project No 859480). This program is supported by the Austrian Federal Ministries for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) and for Digital and Economic Affairs (BMDW), represented by the Austrian research funding association (FFG), and the federal states of Styria, Upper Austria and Tyrol.

References

Al-Juboori AAA 2020. Mechanisms of squat initiation and propagation on rail surfaces. Deng X., Qian Z., Li Z., Dollevoet R. 2018. Investigation of the formation of corrugation-induced rail squats based on extensive field monitoring. International Journal of Fatigue 112, 94–105. Grassie S.L. 2011. Squats and squat-type defects in rails: the understanding to date. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 226, 235–242. Ito A., Kurihara R. 1965. Shelling of rails experienced in Japanese railways. Bull. Permanent Way Sot. Jpn 13, 17–32. Jörg A 2010. Ein Beitrag zur Bewertung der Bruchsicherheit von Eisenbahnschienen. Graz. Jörg A., Stock R., Scheriau S., Brantner H.P., Knoll B., Mach M., Daves W. 2015. The Squat Condition of Rail Materials - a Novel Approach to Squat Prevention. In:, CM2015 ‐ 10th International Conference on Contact Mechanics. Li Z. 2009. Squats on railway rails. In: R. Lewis and U. Olofsson (eds.), Wheel-rail interface handbook. Elsevier. Li Z., Dollevoet R., Molodova M., Zhao X. 2011. Squat growth - Some observations and the validation of numerical predictions. Wear 271, 148– 157. Lichtberger B 2010. Handbuch Gleis. 3. Eurailpress, Hamburg: 656 pp. M. B. Prime, R. J. Sebring, J. M. Edwards, D. J. Hughes, P. J. Webster 2004. Laser surface-contouring and spline data-smoothing for residual stress measurement. Experimental Mechanics 44, 176–184. Meyer K.A., Skrypnyk R., Pletz M. 2021. Efficient 3d finite element modeling of cyclic elasto-plastic rolling contact. Tribology International 161, 107053. Michael B. Prime, Adrian T. DeWald 2013. The Contour Method. In:, Practical Residual Stress Measurement Methods. John Wiley & Sons, Ltd. Naeimi M 2020. An investigation into the formation of squats in rails: modelling, characterization and testing. Delft University of Technology, Delft. Nakamura R., Owaku S., Enomoto N. 1965. The rail shelly crack in Japan. Railway Technical Research Institute, Quarterly Reports 6. P. Clayton, M. B. P. Allery 1982. Metallurgical Aspects of Surface Damage Problems in Rails. Canadian Metallurgical Quarterly 21, 31–46. Pagliaro P 2008. MAPPING MULTIPLE RESIDUAL STRESS COMPONENTS USING THE CONTOUR METHOD AND SUPERPOSITION. Pal S., Daniel W.J., Farjoo M. 2013. Early stages of rail squat formation and the role of a white etching layer. International Journal of Fatigue 52, 144–156. Prevéy P.S. 2019. X-Ray Diffraction Residual-Stress Techniques. In:, Materials Characterization. ASM International. Prime M.B. 2001. Cross-Sectional Mapping of Residual Stresses by Measuring the Surface Contour After a Cut. Journal of Engineering Materials and Technology 123, 162–168. Prime M.B., Gonzales A. 2000. THE CONTOUR METHOD: SIMPLE 2-D MAPPING OF RESIDUAL STRESSES. Stock R., Kubin W., Daves W., Six K. 2019. Advanced maintenance strategies for improved squat mitigation. Wear 436-437, 203034.

Made with FlippingBook flipbook maker