Issue34

N.R. Gates et alii, Frattura ed Integrità Strutturale, 34 (2015) 27-41; DOI: 10.3221/IGF-ESIS.34.03

[3] Tanaka, K., Small fatigue crack propagation in notched components under combined torsional and axial loading, Procedia Eng., 2 (2010) 27–46. [4] Zhang, H., Fatemi, A., Short Fatigue crack growth behaviour under mixed-mode loading, Int. J. Fract., 165 (2010) 1– 19. [5] Qian, J., Fatemi, A., Fatigue crack growth under mixed-mode I and II loading, Fatigue Fract. Eng. Mater. Struct., 19:1 (1996) 1277–1284. [6] Socie, D. F., Marquis, G. B., Multiaxial Fatigue, Society of Automotive Engineers, Inc., Warrendale, PA, (2000). [7] Murakami, Y., Takahashi, K., Kusumoto, R., Threshold and growth mechanism of fatigue cracks under mode II and III loadings, Fatigue Fract. Eng. Mater. Struct., 26 (2003) 523–531. [8] Doquet, V., Bertolino, G., Local approach to fatigue cracks bifurcation, Int. J. Fatigue, 30 (2008) 942–950. [9] Tanaka, K., Small crack propagation in multiaxial notch fatigue, Proceedings of the 4th International Conference on Crack Paths (CP 2012), Gaeta, Italy, (2012) 31–45. [10] Pokluda, J., Pippan, R., Vojtek, T., Hohenwarter, A., Near-threshold behaviour of shear-mode fatigue cracks in metallic materials, Fatigue Fract. Eng. Mater. Struct., 37 (2014) 232–254. [11] Tschegg, E. K., Mode III and Mode I fatigue crack propagation behaviour under torsion loading, J. Mater. Sci., 18 (1983) 1604–1614. [12] Shamsaei, N., Fatemi, A., Small fatigue crack growth under multiaxial stresses, Int. J. Fatigue, 58 (2014) 126–135. [13] Marco, S. M., Starkey, W. L., A Concept of Fatigue Damage, Trans. ASME, 76 (1954) 627–632. [14] Qian, J., Fatemi, A., Mixed mode fatigue crack growth: a literature survey, Eng. Fract. Mech., 55 (1996) 969–990. [15] Erdogan, F., Sih, G. C., On the crack extension in plates under plane loading and transverse shear, ASME J. Basic Eng., 85 (1963) 519–525. [16] Tanaka, K., Fatigue crack propagation from a crack inclined to the cyclic tensile axis, Eng. Fract. Mech., 6 (1974) 493–507. [17] Murakami, Y., Takahashi, K., Torsional fatigue of a medium carbon steel containing an initial small surface crack introduced by tension-compression fatigue: crack branching, non-propagation and fatigue limit, Fatigue Fract. Eng. Mater. Struct., 21 (1998) 1473–1484. [18] Makabe, C., Socie, D. F., Crack growth mechanism in precracked torsional fatigue specimens, Fatigue Fract. Eng. Mater. Struct., 24 (2001) 607–615. [19] Tong, J., Yates, R., Brown, M. W., A model for sliding mode crack closure Part I: Theory for pure mode II loading, Eng. Fract. Mech., 52:4 (1995) 599–611. [20] Tong, J., Yates, R., Brown, M. W., A model for sliding mode crack closure Part II: Mixed mode I and II loading and application, Eng. Fract. Mech., 52:4 (1995) 613–623. [21] Künkler, B., Düber, O., Köster, P., Krupp, U., Fritzen, C.-P., Christ, H.-J., Modelling of short crack propagation - Transition from stage I to stage II, Eng. Fract. Mech., 75 (2008) 715–725. [22] ASTM Standard E 2207-08: Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin Walled Tubular Specimens, in: Bailey, S. J., Baldini, N. C. (Eds.), Annual Book of ASTM Standards, vol. 03.01, ASTM International, West Conshohocken, (2009) 1258–1265. [23] ASTM Standard E 1012-05: Standard Practice for Verification of Test Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application, in: Bailey, S. J., Baldini, N. C. (Eds.), Annual Book of ASTM Standards, vol. 03.01, ASTM International, West Conshohocken, PA, (2009) 797–807. [24] Oberg, E., Jones, F. D., Horton, H. L., Ryffel, H. H., Machinery’s Handbook, twenty-sixth ed., Industrial Press Inc., New York, (2000). [25] Doquet, V., Bertolino, G., A material and environment-dependent criterion for the prediction of fatigue crack paths in metallic structures, Eng. Fract. Mech., 75 (2008) 3399–3412. [26] Military Handbook: Metallic Materials and Elements for Aerospace Vehicle Structures: MIL-HDBK-5H, United States Department of Defense, (1998). [27] Merati, A., A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3, Int. J. Fatigue, 27 (2005) 33–44. [28] Murakami, Y., Fukushima, Y., Toyama, K., Matsuoka, S., Fatigue crack path and threshold in Mode II and Mode III loadings, Eng. Fract. Mech., 75 (2008) 306–318. [29] Beer, T., Crack Shapes During Biaxial Fatigue, Report No. 106, University of Illinois at Urbana-Champaign, Urbana, IL, (1984). [30] Vaziri, A., Nayeb-Hashemi, H., The effect of crack surface interaction on the stress intensity factor in Mode III crack growth in round shafts, Eng. Fract. Mech., 72 (2005) 617–629.

41

Made with FlippingBook Ebook Creator