PSI - Issue 74
Mitra Delshadmanesh et al. / Procedia Structural Integrity 74 (2025) 9–16 Mitra Delshadmanesh / Structural Integrity Procedia 00 (2025) 000–000
16
8
Fig. 7. Diagram of von Mises stress at the notch root calculated within strain gradient theory and plotted versus number of loading cycles to failure. 5. Conclusions This investigation shows that the high entropy alloy CoCrFeNiMn has excellent fatigue life and low fatigue notch sensitivity. This makes this material extremely interesting for a wide variety of technical applications. The reduced fatigue notch sensitivity against sharp notches can be well explained by strain gradient elasticity. It is, however, challenging to find a consistent set of material parameters that can be applied to arbitrary mechanical experiments. Acknowledgements The authors acknowledge funding from the Austrian Science Fund FWF through Grant No. P 36626-N. The computational results presented here have been achieved using the Vienna Scientific Cluster (VSC). References Chapetti, M. D., Guerrero, A. O., 2013. Estimation of notch sensitivity and size effect on fatigue resistance, Procedia Engineering 66, 323 – 333 Geilen, M.B, Klein, M., Oechsner, M., Kaffenberger, M., Störzel K, Melz, T., 2020. A method for the strain rate dependent correction for control type of fatigue tests, International Journal of Fatigue 138, 105726 Hamano, Y., Koyama, M., Hamada, S., Noguchi, H., 2016. Notch Sensitivity of the Fatigue Limit in High-Strength Steel, ISIJ International, Vol. 56, No. 8, pp. 1480–1486 Hu, X. A., Yang, X. G., Wang, J. K., Shi, D. Q., Huang, J., 2013. A simple method to analyse the notch sensitivity of specimens in fatigue tests, Wiley, Fatigue Fract Engng Mater Struct, 36, 1009–1016 McEvily, A.J., Endo, M., Yamashita K., Ishihara, S., Matsunaga, H, 2008. Fatigue notch sensitivity and the notch size effect, International Journal of Fatigue 30, 2087–2093 Mindlin, R.D., 1964. Microstructure in linear elasticity, Arch. Rat. Mech. Anal. 16, 51-78. Vincent, A.J.B., Cantor, B., 1981. Part II thesis, University of Sussex. Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.-S., Shun, T.T., Tsau, C.H., Chang, S.Y., 2004. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (5) 299–303. Zare Ghomsheh, M., Khatibi, G., Weiss, B., Lederer, M., Schwarz, S., Steiger-Thirsfeld, A., Tikhonovsky, M.A., Tabachnikova, E.D., Schafler, E., 2020. High cycle fatigue deformation mechanisms of a single phase CrMnFeCoNi high entropy alloy, Mater. Sci. Eng. A 777, 139034. Cantor, B., Chang, I.T.H., Knight, B., Vincent, A.J.B., 2004. Microstructural development in equiatomic multicomponent alloys, Mater. Sci. and Eng. A 375 - 377, 213-218.
Made with FlippingBook - professional solution for displaying marketing and sales documents online