PSI - Issue 73
Drahomír Novák et al. / Procedia Structural Integrity 73 (2025) 119–124 Novák, D., Vořechovský, M., Rusina, M. / Structural Integrity Procedia 00 (2025) 000 – 000
123
5
0,12 34377,32 379 150 25
input variables
CALCULATION OF THE SHEAR CAPACITY COEFFICIENT
Notation
Variable
Value
Unit
Notation
Variable
Value
Unit
5
C Rd,c
Shear capacity coefficient
0,12 -
C Rd,c,K
Shear capacity coefficient
0,18 -
12
d
Effective height
379mm 150mm
γ c
Partial factor of material reliability for concrete
1,5 -
b w f ck
Minimum section width in the tensile area Cylindrical compressive strength of concrete
C Rd,c
Shear capacity coefficient
0,12 -
25 MPa
n
Number of longitudinal reinforcement bars anchored to the m
5 pcs
SUPPORTING CALCULATIONS CALCULATION OF THE DEGREE OF REINFORCEMENT
φ
Diameter of longitudinal reinforcement bars
12mm
Notation
Variable
Value
Unit
5,0000 pcs 12,0000mm 565,4867 mm 2
n
Number of longitudinal reinforcement bars anchored to the minimu
φ
Diameter of reinforcement bars
A sl b w
Area of drawn reinforcement anchored to minimum anchor length
CHECKING THE MINIMUM SHEAR CAPACITY ACCORDING TO EN 1992-1-1
Minimum section width in the tensile area
150,0000 379,0000
Notation
Variable
Value
Unit
d
Effective height
ρ l
V Rc,d V Rc,d
Minimum shear capacity Calculated shear capacity
22567,99632 N 34377,31951 N
Degree of reinforcement of longitudinal drawn reinforcement
0,9947% 0,9947%
= � ≤ 2,0
WARNING! The maximum value is 2.0.
= ∗ 2 4 ∗
CALCULATION OF THE EFFECTIVE HEIGHT COEFFICIENT
Notation
Variable
Value
Unit
d k
Effective height
379mm
Effective height coefficient
1,726432712 - 1,726432712 -
WARNING! The maximum value is 2.0.
input variables
Notation
Variable
COV
C Rd,c
Shear capacity coefficient
Deterministic -
CALCULATION OF MINIMUM SHEAR STRESS
d
Effective height
Normal Normal
0,05 0,03 0,15
Notation
Variable
Value
Unit
k
Effective height coefficient (see below) Cylindrical compressive strength of concrete
1,726432712 -
b w f ck
Minimum section width in the tensile area Cylindrical compressive strength of concrete
f ck
25 MPa
Log-normal
=0,035 � 3 2 � 12
v min
Minimum shear stress
0,39697443 MPa
n φ
Number of longitudinal reinforcement bars anchored to the m Deterministic -
Diameter of longitudinal reinforcement bars
Deterministic -
Fig. 3. Example of EN shear strength model in MS Excel sheet.
6. Conclusion The presented software tool may be applied in the advanced design/assessment of engineering tasks, when making decisions about alternatives, when searching for optimum life-cycle cost solutions, and in cost-effective decision-making processes. A new interface of FReET software to MS Excel represents a user-friendly alternative for “making reliability analysis easy”. It is used for both research and teaching purposes, especially for teaching a reliability subject is very successful for its user-friendly simplicity. Acknowledgements The financial support of the European Union within the framework of the Interreg Austria-Czechia 2021-2027 program, project No. ATCZ00068 IREC, is gratefully acknowledged. The support from Technological Agency of Czech Republic, project BRIHIS No. TM04000012 and from the bilateral project MMOSS Lead Agency GAČR / NCN No. 25-14337L / DEC-2023/51/I/ST11/00069 awarded by the Czech Science Foundation/NCN is also acknowledged.
References
Decisioneering Inc., 2025. Oracle Crystall Ball. Available at: http://www.decisioneering.com/. Microsoft Corporation, 2025. Microsoft Excel, Available at: https://office.microsoft.com/excel. Novák, D., Vořechovský , M., Teplý, B. 2014. FReET: Software for the statistical and reliability analysis of engineering problems and FReET-D: Degradation module. Advances in Engineering Software (Elsevier) 72, 179-192. Novák, D., Vořechovský , M., Rusina, R. 2025. FreET software. Available at: http://www.freet.cz . Strauss, A., Novák, D., Lehký, D., Vořechovský, M., Teplý, B., Pukl, R., Červenka, V., Eichinger -Vill, E. M., Santa, U. 2019. Safety analysis and reliability assessment of engineering structures – The success story of SARA. ce/papers, 3(2), 38–47. Vořechovský , M, Novák, D. 2009. Correlation control in small sample Monte Carlo type simulations I: A Simulated Annealing approach. Probabilistic Engineering Mechanics (Elsevier), 24(3), 452-462.
Made with FlippingBook - Online Brochure Maker