PSI - Issue 73

Drahomír Novák et al. / Procedia Structural Integrity 73 (2025) 119–124 Novák, D., Vořechovský, M., Rusina, M. / Structural Integrity Procedia 00 (2025) 000 – 000

123

5

0,12 34377,32 379 150 25

input variables

CALCULATION OF THE SHEAR CAPACITY COEFFICIENT

Notation

Variable

Value

Unit

Notation

Variable

Value

Unit

5

C Rd,c

Shear capacity coefficient

0,12 -

C Rd,c,K

Shear capacity coefficient

0,18 -

12

d

Effective height

379mm 150mm

γ c

Partial factor of material reliability for concrete

1,5 -

b w f ck

Minimum section width in the tensile area Cylindrical compressive strength of concrete

C Rd,c

Shear capacity coefficient

0,12 -

25 MPa

n

Number of longitudinal reinforcement bars anchored to the m

5 pcs

SUPPORTING CALCULATIONS CALCULATION OF THE DEGREE OF REINFORCEMENT

φ

Diameter of longitudinal reinforcement bars

12mm

Notation

Variable

Value

Unit

5,0000 pcs 12,0000mm 565,4867 mm 2

n

Number of longitudinal reinforcement bars anchored to the minimu

φ

Diameter of reinforcement bars

A sl b w

Area of drawn reinforcement anchored to minimum anchor length

CHECKING THE MINIMUM SHEAR CAPACITY ACCORDING TO EN 1992-1-1

Minimum section width in the tensile area

150,0000 379,0000

Notation

Variable

Value

Unit

d

Effective height

ρ l

V Rc,d V Rc,d

Minimum shear capacity Calculated shear capacity

22567,99632 N 34377,31951 N

Degree of reinforcement of longitudinal drawn reinforcement

0,9947% 0,9947%

= � ≤ 2,0

WARNING! The maximum value is 2.0.

= ∗ 2 4 ∗

CALCULATION OF THE EFFECTIVE HEIGHT COEFFICIENT

Notation

Variable

Value

Unit

d k

Effective height

379mm

Effective height coefficient

1,726432712 - 1,726432712 -

WARNING! The maximum value is 2.0.

input variables

Notation

Variable

PDF

COV

C Rd,c

Shear capacity coefficient

Deterministic -

CALCULATION OF MINIMUM SHEAR STRESS

d

Effective height

Normal Normal

0,05 0,03 0,15

Notation

Variable

Value

Unit

k

Effective height coefficient (see below) Cylindrical compressive strength of concrete

1,726432712 -

b w f ck

Minimum section width in the tensile area Cylindrical compressive strength of concrete

f ck

25 MPa

Log-normal

=0,035 � 3 2 � 12

v min

Minimum shear stress

0,39697443 MPa

n φ

Number of longitudinal reinforcement bars anchored to the m Deterministic -

Diameter of longitudinal reinforcement bars

Deterministic -

Fig. 3. Example of EN shear strength model in MS Excel sheet.

6. Conclusion The presented software tool may be applied in the advanced design/assessment of engineering tasks, when making decisions about alternatives, when searching for optimum life-cycle cost solutions, and in cost-effective decision-making processes. A new interface of FReET software to MS Excel represents a user-friendly alternative for “making reliability analysis easy”. It is used for both research and teaching purposes, especially for teaching a reliability subject is very successful for its user-friendly simplicity. Acknowledgements The financial support of the European Union within the framework of the Interreg Austria-Czechia 2021-2027 program, project No. ATCZ00068 IREC, is gratefully acknowledged. The support from Technological Agency of Czech Republic, project BRIHIS No. TM04000012 and from the bilateral project MMOSS Lead Agency GAČR / NCN No. 25-14337L / DEC-2023/51/I/ST11/00069 awarded by the Czech Science Foundation/NCN is also acknowledged.

References

Decisioneering Inc., 2025. Oracle Crystall Ball. Available at: http://www.decisioneering.com/. Microsoft Corporation, 2025. Microsoft Excel, Available at: https://office.microsoft.com/excel. Novák, D., Vořechovský , M., Teplý, B. 2014. FReET: Software for the statistical and reliability analysis of engineering problems and FReET-D: Degradation module. Advances in Engineering Software (Elsevier) 72, 179-192. Novák, D., Vořechovský , M., Rusina, R. 2025. FreET software. Available at: http://www.freet.cz . Strauss, A., Novák, D., Lehký, D., Vořechovský, M., Teplý, B., Pukl, R., Červenka, V., Eichinger -Vill, E. M., Santa, U. 2019. Safety analysis and reliability assessment of engineering structures – The success story of SARA. ce/papers, 3(2), 38–47. Vořechovský , M, Novák, D. 2009. Correlation control in small sample Monte Carlo type simulations I: A Simulated Annealing approach. Probabilistic Engineering Mechanics (Elsevier), 24(3), 452-462.

Made with FlippingBook - Online Brochure Maker