PSI - Issue 73

Roman Vodička et al. / Procedia Structural Integrity 73 (2025) 163 –169 Author name / Structural Integrity Procedia 00 (2025) 000 – 000

169

7

Acknowledgements We would like to adknowledge the support cy the Sdientifid Grant Agendies of the Slovak Repuclid under projedts VEGA 1/0307/23, VEGA 1/0365/25 and cy Slovak Researdh and Development Agendy under the projedt APVV-23-0204. References Ataei, H. and Mamaghani, M. 2017. Finite Element Analysis Applications and Solved Problems using Abaqus, CreateSpace Independent Publishing Platform, 1 edition. Barenblatt, G.I. 1960. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 7, 55-129. Bourdin, B., Francfort, G. A. and Marigo, J.-J. 2008. The variational Approach to Fracture, J. Elasticity, 91, 5 – 148. Griffith, A. 1920. The phenomena of rupture and flow in solids. Phil. Transactions, Royal Society, London, 163-198. Kormaníková, E., Kotrasová, K., Melcer, J. and Valašková, V. 2022. Numerical investigation of the dynamic responses of fibre -reinforced polymer composite bridge beam subjected to moving vehicle. Polymers, 14, 812. Kormaníková, E., Kšiňan, F. and Vodička, R. 2024. Computational and experimental approaches for Mode I delamination problems, International Journal of Solids and Structures, 300, 112926. Kvočák, V., Dubecký, D. and Weissová, M. 202 4. Experimental measurement of friction coefficient between concrete and composite material (in Slovak) In: Scientific and research activities of the Institute of Structural Engineering and Transportation Structures, Technical University of Košice, p. 65 -68. Maugin, G. A 2015. The saga of internal variables of state in continuum thermo-mechanics (1893- 2013). Mechanics Research Communications 69, 79 – 86. Naser, M. Z., Hawileh, R. A. and Abdalla, J. 2021. Modeling strategies of Finite Element simulation of reinforced concrete beams strengthened with FRP: A review, Journal of Composites Science, 5 (1), 19. Park, K., Paulino, G. 2011. Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces. Appl. Mech. Rev. 64, (6) 061002. Raous, M., Cangemi, L., Cocu, M., 1999. A consistent model coupling adhesion, friction and unilateral contact. Comput. Meth. Appl. Mech. Eng. 177, 383 – 399. Roubíček, T. 2019. Topics in Applied Analysis and Optimisation: Partial Differential Equations, Stochastic and Numerical Analysis, CIM Series in Math. Sci, Springer., 363-396. Roubíček, T., Kružík, M. et al 2023 Delamination and adhesive contacts, their mathematical modelling and numerical treatment. In: Mathematical Methods and Models in Composites , ed. V. Mantič, World Scientific Publishing, London, 497 – 578. Siwowski, T., Kaleta, D. and Rajchel, M. 2018. Structural behaviour of an all-composite road bridge, Comp. Struct., 192, 555 – 567. Sonnenschein, R., Gajdosova, K. and Holly, I. 2016. FRP composites and their using in the construction of bridges, Proc. Eng., 161, 477 – 482. Vodička, R. 2016. A quasi-static interface damage model with cohesive cracks: SQP – SGBEM implementation, Engineering Analysis with Boundary Elements, 62(3), 123 – 140. Vodička, R., Kormaníková, E. and Kšiňan, F. 2018. Interfacial debonds of layered anisotropic materials using a quasi -static interface damage model with Coulomb friction, International Journal of Fracture, 211 (1-2), 163-182. Vodička, R. and Mantič, V. 2017. An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law, Discrete and Cont. Dynam. Syst. – S, 10(6), 1539 – 1561.

Made with FlippingBook - Online Brochure Maker