PSI - Issue 73

Pavel Dobeš et al. / Procedia Structural Integrity 73 (2025) 1–8

8

8

Pavel Dobeš/ Structural Integrity Procedia 00 (2025) 000–000

The findings advocate for the use of glued horizontal sheathing as a feasible structural alternative, provided that adhesive quality and installation methods are properly controlled. At the same time, the results highlight the need to avoid unglued horizontal layouts due to their inadequate structural response. In summary, this study supports broader acceptance of glued horizontal configurations in design practice and suggests that standards such as Eurocode 5 could benefit from incorporating validated alternatives reflecting actual

construction trends. Acknowledgements

The authors thank to the Department of Structures and the Centre of Building Experiments and Diagnostics of the Faculty of Civil Engineering at the VSB – Technical University Ostrava for the technical and financial support. References Alinoori, F., Sharafi, P., Moshiri, F., & Samali, B. (2020). Experimental investigation on load bearing capacity of full scaled light timber framed wall for mid-rise buildings. Construction and Building Materials, 231 , 117069. https://doi.org/10.1016/j.conbuildmat.2019.117069 Åkerlund, S. (1984). Enkel beräkningsmodell för skivor på regelstomme (Simple calculation model for sheets on a timber frame). Bygg & Teknik , (1). Carcamo, S., Santa Maria, H., & Zisis, S. (2018). Wood frame shear wall model for a finite element program through a shell element. In Proceedings of the 2018 World Conference on Timber Engineering , Seoul, Republic of Korea. Czech Standards Institute. (2006). EN 1995-1-1; Eurocode 5: Design of timber structures—Part 1-1: General—Common rules and rules for buildings . Prague, Czech Republic. EN 594. (2011). Timber structures. Test methods. Racking strength and stiffness of timber frame wall panels . Czech Standards Institute, Prague, Czech Republic. Erläuterungen zu DIN 1052: 2004-08: Entwurf, Berechnung und Bemessung von Holzbauwerken* (2nd ed.). (2005). Deutsche Gesellschaft für Holzforschung, Karlsruhe, Germany. ISBN 3-87104-146-7. Gattesco, N., & Boem, I. (2016). Stress distribution among sheathing-to-frame nails of timber shear walls related to different base connections: Experimental tests and numerical modelling. Construction and Building Materials, 122 , 149–162. https://doi.org/10.1016/j.conbuildmat.2016.06.079 Källsner, B. (1984). Panels as wind-bracing elements in timber-framed walls (Report No. 56). Swedish Institute for Wood Technology Research. Källsner, B., & Lam, F. (1995). Diaphragms and shear walls. In Holzbauwerke: Grundlagen, Entwicklungen, Ergänzungen nach Eurocode 5, Step 3 (pp. 15/1–15/17). Fachverlag Holz. Lokaj, A., Mikolášek , D., Dobeš, P., Johanides, M., & Mynarčík, P. (202 3 ). Analýza vlivu orientace desek opláštění na horizontální únosnost a tuhost stěnových panelů dřevostaveb. TZB-info . https://stavba.tzb-info.cz/obvodove-plaste-drevostaveb/25526-analyza-vlivu-orientace-desek oplasteni-na-horizontalni-unosnost-a-tuhost-stenovych-panelu-drevostaveb Peterson, J., & Peterson, J. (1983). Bibliography on lumber and wood panel diaphragms. Journal of Structural Engineering, 109 (12), 2838–2852. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:12(2838) Sadeghi Marzaleh, A., Nerbano, S., Sebastiani Croce, A., & Steiger, R. (2018). OSB sheathed light-frame timber shear walls with strong anchorage subjected to vertical load, bending moment, and monotonic lateral load. Engineering Structures, 173 , 787–799. https://doi.org/10.1016/j.engstruct.2018.05.044 Vogrinec, K., Premrov, M., & Kozem Šilih, E. (2016). Simplified modelling of timber-framed walls under lateral loads. Engineering Structures, 111 , 275–284. https://doi.org/10.1016/j.engstruct.2015.12.029

Made with FlippingBook - Online Brochure Maker