Issue 73

H. S. Vishwanatha et alii, Fracture and Structural Integrity, 73 (2025) 23-40; DOI: 10.3221/IGF-ESIS.73.03

[4] Bažant, Z. P. (1998). Size effect in tensile and compression fracture of concrete structures: Computational modeling and design. In Fracture Mechanics of Concrete Structures, 3, pp. 1905–1922. [5] Bažant, Z. P. and Kazemi, M. T. (1990). Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete. International Journal of Fracture, 44, pp. 111-131. [6] RILEM FMT 89. (1990). Size-effect method for determining fracture energy and process zone size of concrete. Materials and Structures, 23(6), pp. 461-465. [7] Bažant, Z. P. and Planas, J. (1998). Fracture and Size Effect in Concrete and Other Quasibrittle Materials. Boca Raton, FL: CRC Press. [8] Elices, M., Guinea, G. V. and Planas, J. (1992). Measurement of the fracture energy using three-point bend tests: Part 3 - Influence of cutting the P −δ tail. Materials and Structures, 25, pp. 327-334. [9] Guinea, G. V., Planas, J. and Elices, M. (1998). Measurement of the fracture energy using three-point bend tests: Part 1 - Influence of experimental procedures. Materials and Structures, 31(4), pp. 231-237. DOI: 10.1007/BF02480471. [10] Pastor, J., Guinea, G. V., Planas, J. and Elices, M. (1995). A new expression for the stress intensity factor for the three point bending test specimen. Anales de Mecánica de la Fractura, 12, pp. 85-90. [11] Trawi ń ski, W., Tejchman, J. and Bobi ń ski, J. (2018). A three-dimensional meso-scale modeling of concrete fracture, based on cohesive elements and X-ray CT images. Engineering Fracture Mechanics, 189, pp. 27-50. DOI: 10.1016/j.engfracmech.2017.10.003. [12] Chen, H., Xu, B., Wang, J., Nie, X. and Mo, Y. L. (2020). XFEM-based multiscale simulation on monotonic and hysteretic behavior of reinforced-concrete columns. Applied Sciences, 10(21), pp. 1-21. DOI: 10.3390/app10217899. [13] Wang, X., Yang, Z. and Jivkov, A. P. (2015). Monte Carlo simulations of mesoscale fracture of concrete with random aggregates and pores: A size effect study. Construction and Building Materials, 80, pp. 262-272. DOI: 10.1016/j.conbuildmat.2015.02.002. [14] Vishwanatha, H. S., Muralidhara, S. and Raghu Prasad, B. K. (2023). Fracture Simulation of Concrete Beams to assess softening behavior by varying different fractions of Aggregates. Fracture and Structural Integrity, 18(67), pp. 43–57. DOI: 10.3221/IGF-ESIS.67.04. [15] Vishwanatha, H. S., Muralidhara, S. and Raghu Prasad, B. K. (2025). Investigation on the characterization and modelling of Fracture Process Zone behavior in Concrete Beams subjected to Three-Point Loading Tests. Fracture and Structural Integrity, 19(72), pp. 80–101. DOI: 10.3221/IGF-ESIS.72.07. [16] Ren, X., Yang, W., Zhou, Y. and Li, J. (2008). Behavior of high-performance concrete under uniaxial and biaxial loading. ACI Materials Journal, 105(6), 548. [17] Cooper, T. P. (2000). Size effects (macro-and micro-scale) on the fracture behavior of high strength concrete (Master's thesis). Department of Civil Engineering, Case Western Reserve University. [18] Ozbolt, J. and Eligehausen, R. (2002). Size effect in concrete and reinforced concrete structures. In A. Carpinteri (Ed.), Proceedings of the International Union of Theoretical and Applied Mechanics (IUTAM) Symposium on Size-Scale Effects in the Failure Mechanisms of Materials and Structures (p. 290). London: Taylor and Francis. [19] Elices, M. and Planas, G. (2002). Prediction of size-effect based on cohesive crack models. In A. Carpinteri (Ed.), Proceedings of the International Union of Theoretical and Applied Mechanics (IUTAM) Symposium on Size-Scale Effects in the Failure Mechanisms of Materials and Structures (p. 309). London: Taylor and Francis. [20] Ameli, Z., Rahman, M. M. and Carloni, C. (2023). Largest Experimental Investigation on Size Effect of Concrete Notched Beams. Journal of Engineering Mechanics. 150. DOI: 10.1061/JENMDT.EMENG-7225. [21] Carloni, C., Santandrea, M. and Baietti, G. (2019). Influence of the width of the specimen on the fracture response of concrete notched beams. Engineering Fracture Mechanics, 216, 106465. DOI: 10.1016/j.engfracmech.2019.04.039. [22] Bazant, Z. P. and Pfeiffer, P. A. (1987). Determination of Fracture Energy From Size Effect and Brittleness Number. ACI Materials Journal, 84(6), pp. 463–480. DOI: 10.14359/2526. [23] El-Tohfa, A. and Mukhtar, F. (2023). Fracture and size effect analysis in concrete using 3-D G/XFEM and a CZM LEFM correlation model: Validation with experiments. Computers and Structures, 282, 107043. DOI: 10.1016/j.compstruc.2023.107043. [24] Huang, Y.J., Yang, Z.J., Liu, G.H. and Chen, X.W. (2016). An efficient FE–SBFE coupled method for mesoscale cohesive fracture modelling of concrete. Computational Mechanics, 58(4), pp. 635 – 655. DOI: 10.1007/s00466-016-1309-8. [25] Wang, Z., Zhang, W. and Huang, Y. (2023). Experimental and Numerical Study of Concrete Fracture Behavior with Multiple Cracks Based on the Meso-Model. Materials, 16(18), 6311.

40

Made with FlippingBook Digital Proposal Maker