Issue 72
S. K. Kourkoulis et al., Fracture and Structural Integrity, 72 (2025) 179-192; DOI: 10.3221/IGF-ESIS.72.13
[7] Vallianatos, F., Tzanis, A. (1998). Electric current generation associated with the deformation rate of a solid: Preseismic and coseismic signals, Phys. Chem. Earth, 23(9-10), pp. 933–938. DOI: 10.1016/S0079-1946(98)00122-0. [8] Freund, F.T., Kulahci, I.G., Cyr, G., Ling, J.L., Winnick, M., Tregloan-Reed, J., Freund, M.M. (2009). Air ionization at rock surfaces and pre-earthquake signals, J. Atmos. Solar Terr. Phys. 71(17-18), pp. 1824–1834. DOI: 10.1016/j.jastp. 2009.07.013. [9] Liu, Z., Li, X., Li, Z., Liu, Y., Yang, Y., Feng, J. (2014). Electric potential of the hole wall of concrete under uniaxial compression, J. China Coal Society, 39(Supp.2), pp. 372–377. DOI: 10.13225/j.cnki.jccs.2013.1762. [10] Kyriazopoulos, A. (2017). Acoustic emissions and electric signal recordings, when cement mortar beams are subjected to three-point bending under various loading protocols, Fracture and Structural Integrity, 11(40), pp. 52–60. DOI: 10.3221/IGF-ESIS.40.05. [11] Saltas, V., Vallianatos F., Triantis, D., Stavrakas, I. (2018). Complexity in laboratory seismology: From electrical and acoustic emissions to fracture, In: Complexity of Seismic Time Series, Measurement and Application, Chelidge, T., Vallianatos, F., Telesca L. eds., Elsevier, Ch. 8, pp. 239–273. DOI: 10.1016/B978-0-12-813138-1.00008-0. [12] Li, D., Wang, E., Yue, J., Li, M., Li, L., Wang, D., Liang, W. (2023). Characteristics of pressure stimulated current and damage evolution of granite under progressive uniaxial loading, Sustainability, 15, 14526. DOI: 10.3390/su151914526 [13] Zhang, X., Li, Z., Niu, Y., Cheng, F., Ali, M., Bacha, S. (2019). An experimental study on the precursory characteristics of EP before sandstone failure based on critical slowing down, J. Appl. Geophys., 170, 103818. DOI 0.1016/j.jappgeo. 2019.103818. [14] Li, M., Wang, H., Wang, D., Shao, Z. (2020). Experimental study on characteristics of surface potential and current induced by stress on coal mine sandstone roof, Eng. Geol., 266, 105468. DOI: 10.1016/j.enggeo.2019.105468. [15] Li, Z., Shan, T., Wang, E., Niu, Y., Wang, X., Zhang, X., Jia, H., Chen, D., Yin, S., Sun, W. (2024). Experimental study on response and precursor of pressure stimulated currents of combined coal-rock under cycling stress, Int. J. Rock Mech. Min. Sci., 177, 105745. DOI: 10.1016/j.ijrmms.2024.105745. [16] Mao, W., Wu, L., Xu, Y., Yao, R., Lu, J., Sun, L., Qi, Y. (2022). Pressure-stimulated rock current as loading diorite to failure: Particular variation and holistic mechanisms, J. Geophys. Res.: Solid Earth, 127, e2022JB024931. DOI: 10.1029/ 2022JB024931. [17] Vallianatos, F., Triantis, D. (2012). Is pressure stimulated current relaxation in amphibolite a case of non-extensivity?, EPL, 99, 18006. DOI 10.1209/0295-5075/99/18006. [18] Zang, Z., Li, Z., Zhao, E., Kong, X., Niu, Y., & Yin, S. (2023). Electric potential response characteristics and constitutive model of coal under axial static load-dynamic load coupling, Nat. Resour. Res., 32, pp. 2821–2844. DOI: 10.1007/s 11053-023-10261-w. [19] Shan, T., Li Z., Wang, E., Zhang, X., Jia, H., Wang X., Zhao, E., Niu, Y., Chen, D. (2024). Failure evolution and precursor prediction of fissured sandstone based on power-law behavior of electric potential, Eng. Geol., 346, 107896, DOI: 10.1016/j.enggeo.2024.107896. [20] Li, D., Wang, E., Feng, X., Wang, D., Zhang, X., Ju, Y. (2023). Weak current induced by coal deformation and fracture and its response to mine seismicity in a deep underground coal mine, Eng. Geol., 315, 107018. DOI: 10.1016/j.enggeo. 2023.107018. [21] Pasiou, E.D., Triantis, D. (2017). Correlation between the electric and acoustic signals emitted during compression of brittle materials, Fracture and Structural Integrity, 40, pp. 41-51. DOI: 10.3221/IGF-ESIS.40.04. [22] Zambas, C. (1994). Mechanical properties of Pentelic marbles (in Greek), Publications of the “Committee for the Preservation of the Acropolis Monuments”, The “Acropolis Restoration Service”, Greek Ministry of Culture, Athens, Greece. [23] Vardoulakis, I., Kourkoulis, S.K. (1997). Mechanical properties of Dionysos marble, Final Report of the EU Environment Project EV5V-CT93-0300 “Monuments under seismic action”, National Technical University of Athens, Athens, Greece. [24] Kourkoulis, S.K., Exadaktylos, G.E., Vardoulakis, I. (1999). U-notched Dionysos Pentelicon marble in three point bending: the effect of nonlinearity, anisotropy and microstructure, Int. J. Fract., 98, pp. 369–392. DOI: 10.1023/A: 1018614023542. [25] Stavrakas, I., Kourkoulis, S., & Triantis, D. (2019). Damage evolution in marble under uniaxial compression monitored by Pressure Stimulated Currents and Acoustic Emissions, Fracture and Structural Integrity, 13(50), 573-583. DOI: 10. 3221/IGF-ESIS.50.48. [26] Triantis, D., Stavrakas, I., Pasiou, E.D., Kourkoulis, S.K. (2025). Cyclic loading of marble: Correlating the attenuation of electric and acoustic activities highlighting criticality indices in terms of Natural Time, Int. J. Min. Sci. Technol., Accepted for publication, Available on-line February 07. DOI: 10.1016/j.ijmst.2024.12.015.
191
Made with FlippingBook - Online magazine maker