PSI - Issue 71

S.R. Reddy et al. / Procedia Structural Integrity 71 (2025) 172–179

178

Parameters on Microstructure Evolution During Hot Deformation of a Eutectic High-Entropy Alloy (EHEA). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 51(12). https://doi.org/10.1007/s11661-020-05991-y Bhattacharjee I.S. and Sheikh S. and Clark I.T. and Okawa T. and Guo S. and Bhattacharjee P.P. and Tsuji N., T. and W. 2018. Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy by Cryo-Rolling and Annealing. Scientific Reports, 8(1), 3276. Chokshi, A. H. 2001. On the emergence of new surface grains during superplastic deformation. Scripta Materialia, 44(11), 2611 – 2615. Chokshi, A. H. 2017. High temperature deformation in fine grained high entropy alloys. Mater Chem Phys. Chokshi, A. H. 2020. Grain Boundary Processes in Strengthening, Weakening, and Superplasticity. Advanced Engineering Materials, 22(1). Chokshi A.K. and Langdon T.G., A. H. and M. 1993. Superplasticity in advanced materials. Materials Science and Engineering: R: Reports, 10(6), 237 – 274. Gifkins T., R. and L. 1978. Comments on theories of structural superplasticity. Materials Science and Engineering, 36(1), 27 – 33. Higashi M. and Langdon T.G., K. and M. 1996. High-strain-rate superplasticity in metallic materials and the potential for ceramic materials. ISIJ International, 36(12), 1423 – 1438. Kuznetsov D.G. and Stepanov N.D. and Salishchev G.A. and N O., A. V. and S. 2013. Senkov, Superplasticity of AlCoCrCuFeNi high entropy alloy. In 11 th International Conference on Superplasticity in Advanced Materials, ICSAM 2012. Trans Tech Publications Ltd, Albi. Mohamed, F. A. 2020. Creep and Superplasticity: Evolution and Rationalization. Advanced Engineering Materials, 22(1). Murty B.S, Yeh J.W. and Ranganathan S., High-entropy alloys (p. 2014). Nguyen P. and Sathiyamoorthi P. and Zargaran A. and Lee C.S. and Kim H.S., N. T. C. and A.-R. 2020. Ultrahigh high strain-rate superplasticity in a nanostructured high-entropy alloy. Nat. Commun, 11(1). Nieh, T. G., Wadsworth, J., & Sherby, O. D. (Eds.). 1997. High-strain-rate superplasticity. In Superplasticity in Metals and Ceramics (pp. 154 – 188). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511525230.010 Panicker A.H. and Mishra R.K. and Verma R. and Krajewski P.E., R. and C. 2009. Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy. Acta Materialia, 57(13), 3683 – 3693. Prasad A.H., M. J. N. V. and C. 2010. Extraordinary high strain rate superplasticity in electrodeposited nano-nickel and alloys. Scripta Materialia, 63(1), 136 – 139. Reddy S. and Bhattacharjee P.P. and Chokshi A.H., S. R. and B. 2017. Superplastic-like flow in a fine-grained equiatomic CoCrFeMnNi high-entropy alloy. Materials Research Letters, 5(6), 408 – 414. Reddy, S. R., Bapari, S., Bhattacharjee, P. P., & Chokshi, A. H. 2017. Superplastic-like flow in a fine-grained equiatomic CoCrFeMnNi high-entropy alloy. Materials Research Letters, 5(6). https://doi.org/10.1080/21663831.2017.1305460 Reddy, S. R., Bhattacharjee, P. P., & Murty, B. S. 2022. The Status of Bulk Metallic Glass and High Entropy Alloys Research. In Future Landscape of Structural Materials in India. https://doi.org/10.1007/978-981-16-8523-1_10 Reddy, S. R., Li, X., Guo, S., Bhattacharjee, P. P., & Chokshi, A. H. 2024a. High Strain Rate Superplastic Flow and Fracture Characteristics of a Fine-Grained Eutectic High Entropy Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 55(1). https://doi.org/10.1007/s11661-023-07240-4 Reddy, S. R., Li, X., Guo, S., Bhattacharjee, P. P., & Chokshi, A. H. 2024b. High Strain Rate Superplastic Flow and Fracture Characteristics of a Fine-Grained Eutectic High Entropy Alloy. Metallurgical and Materials Transactions A, 55(1), 173 – 182. Shahmir M. and Shafiee A. and Langdon T.G., H. and N.-A. 2018. Effect of a minor titanium addition on the superplastic properties of a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng. A, 718, 468 – 476. Wani T. and Sheikh S. and Bhattacharjee P.P. and Guo S. and Tsuji N., I. S. and B. 2016. Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Materials Science and Engineering: A, 675(Supplement C), 99 – 109. Wani T. and Sheikh S. and Lu Y.P. and Chatterjee S. and Bhattacharjee P.P. and Guo S. and Tsuji N., I. S. and B. 2016. Ultrafine-Grained AlCoCrFeNi2.1 Eutectic High-Entropy Alloy. Materials Research Letters, 4(3), 174 – 179. Yeh, J. W. 2006. Recent progress in high-entropy alloys. Annales De Chimie-Science Des Materiaux, 31(6), 633 – 648. Yeh S.K. and Lin S.J. and Gan J.Y. and Chin T.S. and Shun T.T. and Tsau C.H. and Chang S.Y., J. W. and C. 2004. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes.

Made with FlippingBook Digital Proposal Maker