PSI - Issue 71
Prasanna Dupare et al. / Procedia Structural Integrity 71 (2025) 118–125
124
Summary and conclusions The following conclusions can be drawn from the current study: 1. Alloy 617M exhibits cyclic hardening, saturation plateau, and a stress drop due to crack formation under LCF test, while CFI test showed initial cyclic hardening, saturation, softening, and stress drop due to cracks. 2. Fatigue life decreased with the introduction of hold times, with greater reductions for longer hold periods 3. Continuous cycle specimens exhibited transgranular cracking, while creep-fatigue specimens showed intergranular cracking due to creep damage References Cabet, C., Carroll, L., & Wright, R. 2013. Low cycle fatigue and creep-fatigue behavior of alloy 617 at high temperature. Journal of Pressure Vessel Technology, Transactions of the ASME, 135(6). https://doi.org/10.1115/1.4025080 Chetal, S. C., Jayakumar, T., & Bhaduri, A. K. 2015. Materials research and opportunities in thermal (coal based) power sector including advanced ultra super critical power plants. Proceedings of the Indian National Science Academy, 81(4), 739 – 754. Ekaputra, I. M. W., Kim, W. G., Park, J. Y., Kim, S. J., & Kim, E. S. 2016. Influence of Dynamic Strain Aging on Tensile Deformation Behavior of Alloy 617. Nuclear Engineering and Technology, 48(6), 1387 – 1395. Goyal, S., Mariappan, K., Shankar, V., Sandhya, R., Laha, K., & Bhaduri, A. K. 2018. Studies on creep fatigue interaction behaviour of Alloy 617M. Materials Science and Engineering: A, 730, 16 – 23. Karnati, A. K., Sarkar, A., Nagesha, A., Parameswaran, P., Sandhya, R., & Narasaiah, N. 2019. Evaluation of high cycle fatigue behaviour of alloy 617M at 973 K: Haigh diagram and associated mechanisms. International Journal of Pressure Vessels and Piping, 172, 304 – 312. Kazuo Kobayashi. 2011. Creep-fatigue interaction properties of nickel-based. 24(2), 125 – 131. Li, K. S., Wang, R. Z., Zhang, X. C., & Tu, S. T. 2023. Creep-fatigue damage mechanisms and life prediction based on crystal plasticity combined with grain boundary cavity model in a nickel-based superalloy at 650 °C. International Journal of Plasticity, 165(March), 103601. Mehdizadeh, M., & Farhangi, H. 2022. Precipitation behavior and mechanical properties of IN 617 superalloy during operating at 850 °C. International Journal of Pressure Vessels and Piping, 198(April), 104674. Rao, C. V., Srinivas, N. C. S., Sastry, G. V. S., & Singh, V. 2019. Dynamic strain aging, deformation and fracture behaviour of the nickel base superalloy Inconel 617. Materials Science and Engineering: A, 742(September 2018), 44 – 60. Rodriguez, P., Bhanu, K., & Rao, S. 1993. Nucleation and Growth of Cracks and Cavities Under Creep Fatigue Interaction. In Progress in Materials Science (Vol. 37). Rodriguez, P., & Mannan, S. L. 1995. High temperature low cycle fatigue. Sadhana, 20(1), 123 – 164. Sandhya, R., Bhanu Sankara Rao, K., & Mannan, S. L. 2005. Creep-fatigue interaction behaviour of a 15Cr 15Ni, Ti modified austenitic stainless steel as a function of Ti/C ratio and microstructure. Materials Science and Engineering: A, 392(1 – 2), 326 – 334. Shankar, V., & Kumar, A. 2022. Comprehensive analysis of evolution of serrated hysteresis loops of Alloy 617 M during low cycle fatigue. Materials Today Communications, 33(October), 104893. Shankar, V., Kumar, A., Mariappan, K., Sandhya, R., Laha, K., Bhaduri, A. K., & Narasaiah, N. 2017. Occurrence of dynamic strain aging in Alloy 617M under low cycle fatigue loading. International Journal of Fatigue, 100, 12 – 20.
Made with FlippingBook Digital Proposal Maker