PSI - Issue 71

Deepu Kumar Singh et al. / Procedia Structural Integrity 71 (2025) 164–171

171

Hu, P., Yang, H., Zhang, P., Wang, W., Liu, J., Cheng, Y., 2022. Experimental and numerical investigations into the ballistic performance of ultra-high molecular weight polyethylene fiber-reinforced laminates. Compos. Struct. 290, 115499. https://doi.org/10.1016/j.compstruct.2022.115499 Khajehsaeid, H., Arghavani, J., Naghdabadi, R., 2013. A hyperelastic constitutive model for rubber-like materials. Eur. J. Mech. - ASolids 38, 144 – 151. https://doi.org/10.1016/j.euromechsol.2012.09.010 Marckmann, G., Verron, E., 2006. Comparison of Hyperelastic Models for Rubber-Like Materials. Rubber Chem. Technol. 79, 835 – 858. https://doi.org/10.5254/1.3547969 Rajole, S., Ravishankar, K.S., Kulkarni, S.M., 2020. Performance study of jute-epoxy composites/sandwiches under normal ballistic impact. Def. Technol. 16, 947 – 955. https://doi.org/10.1016/j.dt.2019.11.011 Sangamesh, Ravishankar, K.S., Kulkarni, S.M., 2018. Ballistic Impact Study on Jute-Epoxy and Natural Rubber Sandwich Composites. Mater. Today Proc. 5, 6916 – 6923. https://doi.org/10.1016/j.matpr.2017.11.353 Singh, D.K., Kumar, D., Yadav, V., 2023. Constitutive modeling of rubber-like materials: an alternative material model. Indian Chem. Eng. 65, 221 – 232. https://doi.org/10.1080/00194506.2022.2119893 Steinmann, P., Hossain, M., Possart, G., 2012. Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Arch. Appl. Mech. 82, 1183– 1217. https://doi.org/10.1007/s00419 012-0610-z Zhu, Z., Li, X., Yang, R., Ye, Z., Teng, Q., 2022. A modified model to predict the ballistic limit of a cubic fragment penetrating Kevlar / titanium fiber metal laminate. Int. J. Impact Eng. 168, 104292. https://doi.org/10.1016/j.ijimpeng.2022.104292

Made with FlippingBook Digital Proposal Maker