PSI - Issue 71
Tapan K. Sawarn et al. / Procedia Structural Integrity 71 (2025) 263–270
270
References A. Stern.2007. Metallurgical and mechanical behavior of high-temperature oxidized PWR fuel cladding materials. PhD thesis, MINES ParisTech, France. A. Stern, J. C. Brachet, V. Maillot, D. Hamon, F. Barcelo, S. Poissonnet, A. Pineau, J. P. Mardon, A. Lesbros .2008. Investigations of the Microstructure and Mechanical Properties of Prior- β Structure as a Function of the Oxygen Content in Two Zirconium Alloys. Journal of ASTM International 5(4), 1 – 20. A. Cabrera Salcedo .2012. Modelling of the “post - quenching” mechanical behaviour, after high -temperature oxidation, of fuel cladding of pressurized water reactors. Doctoral thesis, MINES Paris Tech, France. A. Sawatzky.1979. A proposed criterion for the oxygen embrittlement of zircaloy-4 fuel cladding, in: Zirconium in the Nuclear Industry (Fourth Conference), ASTM STP 681, American Society for Testing and Materials, p. 479-496. H. Uetsuka, T. Furuta, S. Kawasaki .1981. Zircaloy-4 cladding embrittlement due to inner surface oxidation under simulated loss-of-coolant condition. J. Nucl. Sci. Technol. 18:705 – 717. J. C. Brachet, V. M. Vandenberghe, L. Portier, D. Gilbon, A. Lesbros, N. Waeckel, J. P. Mardon .2008. Hydrogen content, pre-oxidation and cooling scenario effects on postquench microstructure and mechanical properties of Zircaloy-4 and M5 alloys in LOCA conditions. Journal of ASTM International 5(5),1 – 28. J. H. Kim, M. H. Lee, B. K. Choi, Y. H. Jeong .2007. Failure behavior of Zircaloy-4 cladding after oxidation and water quench. Journal of Nuclear Materials 362(1),.36 – 45. M. C. Billone .2011. Assessment of current test methods for post-LOCA cladding behavior. Washington (DC): US Nuclear Regulatory Commission (USA), (Report no. NUREG/CR-7139). M. C. Billone .2012. Assessment of Current Test Methods for Post LOCA Cladding Behavior. NUREG/CR-7139. Nuclear Engineering Division Argonne National Laboratory Argonne, USA. M. Flanagan .2011) Mechanical behavior of ballooned and ruptured cladding. Washington (DC): US Nuclear Regulatory Commission (USA); (Report No. NUREG- 2119). M. Yamato, F. Nagase, M. Amaya .2014. Evaluation of fracture resistance of ruptured, oxidized, and quenched Zircaloy cladding by four-point-bend tests. J. Nucl. Sci. Technol. 51, 1125 – 1132. OECD. CSNI technical opinion paper No. 13. LOCA criteria basis and test methodologies. Paris: OECD Nuclear Energy Agency; 2011. (Report no. NEA/CSNI/R (2011)/7). P. Sharma, S. K. Pradhan, A. J. Gaikwad .2015. Uncertainty Analysis for Determination of Critical Break for a Large PHWR. Proceedings of the Forty Second National Conference on Fluid Mechanics and Fluid Power, December 14-16, NITK Surathkal, Karnataka, India S. Leistikow, G. Schanz, H. V. Berg .1978. Kinetics and Morphology of the Isothermal Steam Oxidation of Zircaloy-4 at 700-1300 °C. KFK 2587. S. Yamanaka, T. Tanaka and M. Miyake .1989. Effect of oxygen on hydrogen solubility in zirconium. Journal of Nuclear Materials 167, 231-237. T. Yumura, M. Amaya .2018. Effects of ballooning and rupture on the fracture resistance of Zircaloy-4 fuel cladding tube after LOCA-simulated experiments. Annals of Nuclear Energy (120), 798 – 804. Y. Okada, M. Amaya .2020a. Effects of oxidation and secondary hydriding during simulated loss-of-coolant accident tests on the bending strength of Zircaloy-4 fuel cladding tube. Annals of Nuclear Energy 136, 107028. Y. Okada, M. Amaya .2020b. Evaluation of the maximum bending stress of pre-hydrided Zircaloy-4 cladding tube after simulated loss-of-coolant-accident test. Annals of Nuclear Energy 145 (2020) 107539. Acknowledgements The authors sincerely thank Shri Sourabh Karmakar and Shri K. B. Gaonkar of Post Irradiation Examination Division, BARC for performing the tests necessary for this study. The authors would also like to thank Nuclear Fuel Complex, Hyderabad for providing Zircaloy 4 cladding required for this study.
Made with FlippingBook Digital Proposal Maker