Issue 71

L. Varghese et alii, Fracture and Structural Integrity, 71 (2025) 49-66; DOI: 10.3221/IGF-ESIS.71.05

[7] Rajesh, M., Singh, S.P., Pitchaimani, J. (2018). Mechanical behavior of woven natural fiber fabric composites: Effect of weaving architecture, intra-ply hybridization and stacking sequence of fabrics, Journal of Industrial Textiles, 47(5), pp. 938–59, DOI: 10.1177/1528083716679157. [8] Kamath, S.S., Sampathkumar, D., Bennehalli, B. (2017). A review on natural areca fibre reinforced polymer composite materials, Ciencia e Tecnologia Dos Materiais, , pp. 106–28, DOI: 10.1016/j.ctmat.2017.10.001. [9] Yusriah, L., Sapuan, S.M., Zainudin, E.S., Mariatti, M. (2014). Characterization of physical, mechanical, thermal and morphological properties of agro-waste betel nut (Areca catechu) husk fibre, Journal of Cleaner Production, 72, pp. 174–180, DOI: 10.1016/j.jclepro.2014.02.025. [10] Srinivasan, H., Arumugam, H., A, A.D., Krishnasamy, B., Abdul, A.A., Murugesan, A., Muthukaruppan, A. (2023). Desert cotton and areca nut husk fibre reinforced hybridized bio-benzoxazine/epoxy bio-composites: Thermal, electrical and acoustic insulation applications, Construction and Building Materials, 363, pp. 129870, DOI: 10.1016/j.conbuildmat.2022.129870. [11] Yan, L., Kasal, B., Huang, L. (2016). A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering, Composites Part B: Engineering, 92, pp. 94–132, DOI: 10.1016/j.compositesb.2016.02.002. [12] Koruk, H., Genc, G. (2018).Acoustic and mechanical properties of luffa fiber-reinforced biocomposites. Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Elsevier, pp. 325–341, DOI: 10.1016/B978-0-08-102292-4.00017-5 [13] Shetty, B.P., Naveen, G.J. (2023). Fractography and tensile studies on the effect of different carbon fillers reinforced hybrid nanocomposites, Frattura Ed Integrita Strutturale,vol 17 , pp. 220–232, DOI: 10.3221/IGF-ESIS.66.14. [14] Jain, N.K., Gupta, M.K. (2018). Hybrid teak/sal wood flour reinforced composites: Mechanical, thermal and water absorption properties, Materials Research Express, 5(12), DOI: 10.1088/2053-1591/aae24d. [15] Badyankal, P. V., Gouda, P.S.S., Manjunatha, T.S., Maruthi Prashanth, B.H., Shivayogi, B.H. (2023). Realization of mechanical and tribological properties of hybrid banana, sisal, and pineapple fiber epoxy composites using naturally available fillers, Engineering Research Express, 5(1), DOI: 10.1088/2631-8695/acc311. [16] Anil, K.C., Hemavathi, A.B., Adeebpasha, A. (2023). Mechanical and fractured surface characterization of epoxy/red mud/fly ash/aluminium powder filled hybrid composites for automotive applications, 64, pp. 93–103, DOI: 10.3221/IGF-ESIS.64.06. [17] Binoj, J.S., Raj, R.E., Daniel, B.S.S., Saravanakumar, S.S. (2016). Optimization of short Indian Areca fruit husk fiber (Areca catechu L.)–reinforced polymer composites for maximizing mechanical properties, International Journal of Polymer Analysis and Characterization, 21(2), pp. 112–122, DOI: 10.1080/1023666X.2016.1110765. [18] Miah, M.J., Li, Y., Paul, S.C., Babafemi, A.J., Jang, J.G. (2023). Mechanical strength, shrinkage, and porosity of mortar reinforced with areca nut husk fibers, Construction and Building Materials, 363, DOI: 10.1016/j.conbuildmat.2022.129688. [19] Barczewski, M., Sa, K., Szulc, J. (2019). Application of sun flower husk , hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites : A study into mechanical behavior related to structural and rheological properties, 75(2019 January), pp. 1–11, DOI: 10.1016/j.polymertesting.2019.01.017. [20] Oladele, I.O., Ogunwande, G.S., Taiwo, A.S., Lephuthing, S.S. (2022). Development and characterization of moringa oleifera fruit waste pod derived particulate cellulosic reinforced epoxy bio-composites for structural applications, Heliyon, 8(6), pp. e09755, DOI: 10.1016/j.heliyon.2022.e09755. [21] Anand, K.J., Ekbote, T. (2024). Optimization of clamshell content for improved properties in bamboo-epoxy composites, Frattura ed Integrità Strutturale, 69, pp. 29–42, DOI: 10.3221/IGF-ESIS.69.03. [22] Shakuntala, O., Raghavendra, G., Samir Kumar, A. (2014). Effect of filler loading on mechanical and tribological properties of wood apple shell reinforced epoxy composite, Advances in Materials Science and Engineering, 538651, 9, DOI: 10.1155/2014/538651. [23] Stark, N.M., Service, F., Rowlands, R.E. (2005). Effects of wood fiber characteristics on mechanical properties of wood / polypropylene composites, Wood and Fiber Science, 35(2), 2003. pp. 167-174 [24] Senthil Kumar, K., Siva, I., Jeyaraj, P., Winowlin Jappes, J.T., Amico, S.C., Rajini, N. (2014). Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams, Materials and Design, 56, pp. 379–386, DOI: 10.1016/j.matdes.2013.11.039. [25] Chandradass, J., Kumar, M.R., Velmurugan, R. (2007). Effect of nanoclay addition on vibration properties of glass fibre reinforced vinyl ester composites, Materials Letters, 61(22), pp. 4385–4388, DOI: 10.1016/j.matlet.2007.02.009.

65

Made with FlippingBook - professional solution for displaying marketing and sales documents online