Issue 71
Ch. F. Markides et alii, Fracture and Structural Integrity, 71 (2025) 302-316; DOI: 10.3221/IGF-ESIS.71.22
provided for the respective stress intensity factor K I . The formulae for k and K I can be easily applied by engineers in a wide range of geometries with edge discontinuities varying from almost semi-circular cavities to “mathematical” cracks, provided the length/depth of the notches remains short so as they do not affect each other. As a concluding remark, it should be mentioned that the procedure of introducing geometric discontinuities by means of “stress neutralization” of the respective regions of the body under study, may provide, also, the general solution for more complicated problems, as it is, for example, the configuration of a finite strip with mutually interacting edge notches, though in that case the solutions presented in Parts II and III need significant modifications.
R EFERENCES
[1] Kolosov, G.V. (1935). An application of Complex Variables in the Theory of Elasticity, Moscow, Leningrad. [2] Muskhelishvili, N.I. (1953). Some Basic Problems of the Mathematical Theory of Elasticity, Groningen, The Netherlands, Noordhoff. [3] Markides, C.F., Kourkoulis, S.K. (2023). Revisiting classical concepts of Linear Elastic Fracture Mechanics-Part I: The closing ‘mathematical’ crack in an infinite plate and the respective Stress Intensity Factors, Frat. Ed Integrità Strutt., 17(66), pp. 233–260. DOI: 10.3221/IGF-ESIS.66.15. [4] Dundurs, J. and Comninou, M. (1983). On the exterior crack with contact zones, Int. J. Eng. Sci., 21(3), pp. 223-230. DOI: 10.1016/0020-7225(83)90024-1. [5] Theocaris, P.S., Pazis, D and Konstantellos, B.D. (1986). The exact shape of a deformed internal slant crack under biaxial loading, Int. J. Fract., 30, pp. 135-153. DOI: 10.1007/BF00034022. [6] Markides, C.F., Pazis, D.N. and Kourkoulis, S.K. (2011). Stress intensity factors for the Brazilian disc with a short central crack: Opening versus closing cracks, Appl. Math. Modell., 35(12), pp. 5636-5651. DOI: 10.1016/j.apm.2011. 05.013. [7] Markides, C.F., Kourkoulis, S.K. (2023). Revisiting classical concepts of Linear Elastic Fracture Mechanics-Part II: Stretching finite strips weakened by single edge parabolically-shaped notches, Frat. Ed Integrità Strutt., 18(68), pp. 1– 18. DOI: 10.3221/IGF-ESIS.68.01. [8] Kirsch, E.G. (1898). Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Z. Ver. Dtsch. Ing., 42, pp. 797–807. [9] Irwin, G.R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech., 24, pp. 361–364. DOI: 10.1115/1.4011547. [10] Neuber, H. (1937). Kerbspannungslehre: Grundlagen Für Genaue Spannungsrechnung, Berlin, Julius Springer. [11] Hardrath, H.F., Ohman, L. (1951). A study of elastic and plastic stress concentration factors due to notches and fillets in flat plates, No. NACA-TN-2566. [12] Ling C.B. (1947). Stresses in a notched strip under tension, J. Appl. Mech., 14(4), pp. A275–A280. DOI: 10.1115/ 1.4009733. [13] Peterson, R.E. (1947). Discussion: “Stresses in a Notched Strip Under Tension” (Ling, Chih-Bing, 1947, ASME J. Appl. Mech., 14, pp. A275–A280), J. Appl. Mech., 15(2), p. 176. DOI: 10.1115/1.4009801. [14] Irwin, G.R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech., 24, pp. 361–364. DOI: 10.1115/1.4011547. [15] Westergaard, H.M. (1939). Bearing pressures and cracks: Bearing pressures through a slightly waved surface or through a nearly flat part of a cylinder, and related problems of cracks, J. Appl. Mech., 6, pp. A49-A53. DOI: 10.1115/1.4008919. [16] Williams, M.L. (1957). On the stress distribution at the base of a stationary crack, J. Appl. Mech., 24(1), pp. 109–114. DOI: 10.1115/1.4011454. [17] Creager, M., Paris, P.C. (1967). Elastic field equations for blunt cracks with reference to stress corrosion cracking. Ι nt.. J. Fract. Mech., 3, pp. 247–252. DOI: 10.1007/BF00182890. [18] Glinka, G. Newport, A. (1987). Universal features of elastic notch-tip stress fields. Int. J. Fatigue, 9, pp. 143–150. DOI: 10.1016/0142-1123(87)90069-7. [19] Lazzarin, P., Tovo, R. (1996). A unified approach to the evaluation of linear elastic stress fields in the neighborhood of cracks and notches. Int. J. Fract., 78, pp. 3–19. DOI: 10.1007/BF00018497. [20] Ghanbari, A., Ayatollahi, M.R., Choupani, N., Torabi, A.R. (2024). Tensile fracture of blunt V-notches in rectangular plates additively manufactured from Acrylonitrile Butadiene Styrene with different raster angles. Eng. Fail. Anal., 164, 108670. DOI: 10.1016/j.engfailanal.2024.108670. [21] Hao, R., Zhou, Y., Liao, L., Wu, S., Zhao, F., Li, W. (2024). Discrete-Element analysis of fracture characteristics for transversely isotropic sandstone with U-Notches. Int. J. Geomech., 24(9), 04024200.
315
Made with FlippingBook - professional solution for displaying marketing and sales documents online