Issue 70
D. Kosov et alii, Frattura ed Integrità Strutturale, 70 (2024) 133-156; DOI: 10.3221/IGF-ESIS.70.08
Using Voigt-notation in a 2D space, the displacement field u={u, v} T and the phase field in (5) can be discretized as
m
m
1 i
1 i
i u i u
and
(20)
N
N
u
i i
In (20) N - denotes the shape function associated with node i from all m nodes of element. The corresponding derivatives can be discretized as:
m
m
1 i
i i B
u i u i B
and
(21)
i
1
where = { xx , yy , xy } T . The strain-displacement matrices are expressed as:
N
0
, i x
, i x N , i y N
u
B
, i y N N N 0
B
and
(22)
i
i
, i y i x ,
where N i,x and N i,y are the derivatives of the corresponding shape function with respect to x and y , respectively. According to ANSYS documentation [24], the displacement vector in (19) must be present in the following form {u}={u 1 ,v 1 , 1, … , u 4 ,v 4 , 4 } , and the nodal load vector { r }={ r u1 , r v1 , r 1, … , r u4 , r v4 , r 4 } . Thus, for implementation it is necessary to arrange the components of the stiffness matrix according to:
1 K K K K 1 1 u ru u
v
4 K K K K 1 4 u ru u
v
1
4
0 ... 0 ...
0 0
ru
ru
1
1
v
v
1
4
rv
rv
rv
rv
1
1
1
1
1
4
K
K
0 0
... ...
0 0
r
r
1
1
..
...
...
...
...
...
[ ] K
(23)
1 K K K K 4 1 u ru u
v
4 K K K K 4 4 u ru u
v
1
4
0 ... 0 ...
0 0
ru
ru
4
4
v
v
1
4
rv
rv
rv
rv
4
4
4
4
1
4
K
K
0 0
...
0 0
r
r
4
4
The elements of stiffness matrix (23) and load vector can be calculated from:
K g uu
u
u
T
( ) ( )
B C B dV
ij
i
j
0
(24)
u
B dV T u
( ) ( )
r
g
i
i
for degrees of freedom u i and v i , and
K g uu
u
u
T
( ) ( )
B C B dV
ij
i
j
0
(25)
u
B dV T u
( ) ( )
r
g
i
i
139
Made with FlippingBook Digital Publishing Software