Issue 70

E. V. Feklistova et alii, Frattura ed Integrità Strutturale, 70 (2024) 105-120; DOI: 10.3221/IGF-ESIS.70.06

[7] Xu, W., Tong, Z., Rong, D., Leung, A.Y.T., Xu, X. and Zhou, Z. (2017). Determination of stress intensity factors for finite cracked bimaterial plates in bending, Arch. Appl. Mech., 87, pp. 1151–1163. DOI:10.1007/s00419-017-1239-8. [8] Rabczuk, T., Bordas, S. and Zi, G. (2010). On three-dimensional modeling of crack growth using partition of unity methods, Comput. Struct., 88(23–24), pp. 1391–1411. DOI:10.1016/j.compstruc.2008.08.010. [9] Markides, C. and Kourkoulis, S.K. (2023). Revisiting classical concepts of Linear Elastic Fracture Mechanics-Part I: The closing ‘mathematical’ crack in an infinite plate and the respective Stress Intensity Factors, Frattura ed Integrita Strutturale, 17(66), pp. 233–260. DOI: 10.3221/IGF-ESIS.66.15. [10] Kumchol, Y., Zhenqing, W., Mengzhou, C., Jingbiao, L., Tae-Jong, K., Namjin, S., Kyongsu, J. and Sakaya, R. (2019). A computational methodology for simulating quasi-brittle fracture problems, Comput. Struct., 215, pp. 65–79. DOI: 10.1016/j.compstruc.2019.02.003. [11] Carpinteri, A. and Accornero, F. (2019). The Bridged Crack Model with multiple fibers: Local instabilities, scale effects, plastic shake-down, and hysteresis, Theor. Appl. Fract. Mech., 104, No. 102351. DOI: 10.1016/j.tafmec.2019.102351. [12] Zheng, T., Guo, L., Ding, J. and Li, Z. (2022). An innovative micromechanics-based multiscale damage model of 3D woven composites incorporating probabilistic fiber strength distribution, Compos. Struct., 287, No. 115345. DOI: 10.1016/j.compstruct.2022.115345. [13] Dezfuli, F.H. and Alam, M.S. (2014). Sensitivity analysis of carbon fiber reinforced elastomeric isolators based on experimental tests and finite element simulations, Bull. Earthq. Eng, 12, pp. 1025–1043. DOI:10.1007/s10518-013-9556-y. [14] Nicoletto, G. and Riva, E. (2004). Failure mechanisms in twill-weave laminates: FEM predictions vs. experiments, Compos. Part A Appl. Sci. Manuf., 35(7–8), pp. 787–795. DOI: 10.1016/j.compositesa.2004.01.007. [15] Yun, K., Wang, Z., He, L. and Liu, J. (2018). A damage model based on the introduction of a crack direction parameter for FRP composites under quasi-static load, Compos. Struct., 184, pp. 388–399, DOI: 10.1016/j.compstruct.2017.09.099. [16] Feklistova, E., Mugatarov, A., Wildemann, V. and Agishev, A. (2024). Fracture processes numerical modeling of elastic brittle bodies with statistically distributed subregions strength values. Frattura Ed Integrita Strutturale, 18(68), pp. 325– 339. DOI: 10.3221/IGF-ESIS.68.22. [17] Wildemann, V.E., Feklistova, E.V., Mugatarov, A.I., Mullahmetov, M.N. and Kuchukov, A.M. (2023). Aspects of numerical simulation of failure of elastic-brittle solids, Comput. Contin. Mech., 16(4), pp. 420–429. DOI: 10.7242/1999-6691/2023.16.4.35. [18] Ilinykh, A.V. and Vildeman, V.E. (2012). Modeling of structure and failure processes of granular composites, Comput. Contin. Mech., 5(4), pp. 443–451. DOI:10.7242/1999-6691/2012.5.4.52. [19] Wildemann, V.E. and Ilynykh, A.V. (2007). Simulation of structural failure and scale effects of softening at the post critical deformation stage in heterogeneous media, Phys. Mesomech., 10(4), pp. 23–29. [20] Zhou, R., Lu, Y., Wang, L. and Chen, H. (2021). Mesoscale modeling of size effect on the evolution of fracture process zone in concrete, Eng. Fract. Mech., 245, No. 107559. DOI: 10.1016/j.engfracmech.2021.107559. [21] Lopes, B., Arruda, M.R.T., Almeida-Fernandes, L., Castro, L., Silvestre, N. and Correia, J.R. (2020). Assessment of mesh dependency in the numerical simulation of compact tension tests for orthotropic materials, Compos. Part C Open Access, 1, No. 100006. DOI: 10.1016/j.jcomc.2020.100006. [22] Hai, L. and Lyu, M.-Z. (2023). Modeling tensile failure of concrete considering multivariate correlated random fields of material parameters, Probabilistic Eng. Mech., 74, No. 103529. DOI: 10.1016/j.probengmech.2023.103529. [23] Chen, X. and Li, J. (2023). An extended two-scale random field model for stochastic response analysis and its application to RC Short-leg shear wall structure, Probabilistic Eng. Mech., 74, 103508. DOI:10.1016/j.probengmech.2023.103508. [24] Liu, Y.-Yi, Chen, J.-B. and Li, J. (2024). The modified mesoscopic stochastic fracture model incorporating the random field of Young's modulus for the uniaxial constitutive law of concrete, Probabilistic Eng. Mech., 75, 103585. DOI:10.1016/j.probengmech.2024.103585. [25] Tretyakova, T.V. and Spaskova, E.M. (2013). Experimental study of the limiting stress-strain states of a quasi-brittle material using the digital image correlation method, PNRPU Mech. Bull., 2, pp. 186–198. DOI:10.15593/perm.mech/2013.2.186-198.

120

Made with FlippingBook Digital Publishing Software