Issue 70

K. Dileep et alii, Frattura ed Integrità Strutturale, 70 (2024) 91-104; DOI: 10.3221/IGF-ESIS.70.05

numerical analysis, showing a close agreement in the tensile and bending strength of the nanocomposites. Overall, the study highlights the potential of hybrid fillers to enhance the mechanical properties of epoxy-PLA composites, with optimal filler content vital for maximizing these improvements.

Tensile strength (MPa)

Flexural strength (MPa)

Variation in results (in %)

Specimen Code

From experimental results

From experimental results

Serial No.

From simulation

Variation in results (%)

From simulation

1

PE

23.87

23.07

3.47

52.87

51.7

2.26

2

ESG1

30.73

30.61

0.39

49.69

49.17

1.06

3

ESG2

17.97

16.48

9.04

63.10

64.15

1.64

4

ESG3

15.28

14.18

7.76

30.00

29.47

1.80

5

ESG4

15.78

13.07

10.79

49.66

49.62

0.08

6

ESM1

21.33

19.22

10.98

18.62

18.83

1.12

7

ESM2

14.67

12.61

8.41

17.59

16.41

7.19

8

ESM3

23.15

21.35

8.43

19.35

19.63

-1.43

9

ESM4

27.88

25.68

8.57

36.08

34.86

3.50

Table 3: Comparison of Tensile and Flexural strengths of all specimens obtained from experimentation and FE Simulation.

R EFERENCES

[1] Gouda, P.S., Sridhar, I. and Umarfarooq, M.A. (2022). Crack suppression in glass epoxy hybrid L-bend composites through drawdown coating technique using nano and micro fillers. Materials Today: Proceedings, 62, pp. 7292-7296. DOI: 10.1016/j.matpr.2022.04.465. [2] Parveez, B., Kittur, M.I., Badruddin, I.A., Kamangar, S., Hussien, M. and Umarfarooq, M.A. (2022). Scientific Advancements in Composite Materials for Aircraft Applications: A Review. Polymers, 14(22), p. 5007. DOI: 10.3390/polym14225007. [3] Xiong, R., Grant, A.M., Ma, R., Zhang, S. and Tsukruk, V.V. (2018). Naturally-derived biopolymer nanocomposites: Interfacial design, properties, and emerging applications. Materials Science and Engineering: R: Reports, 125, pp.1-41. DOI: 10.1016/j.mser.2018.01.002. [4] Feng, P., Kong, Y., Yu, L., Li, Y., Gao, C., Peng, S., Pan, H., Zhao, Z. and Shuai, C. (2019). Molybdenum disulfide nanosheets embedded with nanodiamond particles: co-dispersion nanostructures as reinforcements for polymer scaffolds. Applied Materials Today, 17, pp. 216-226. DOI: 10.1016/j.apmt.2019.08.005. [5] Taibi, N., Belabed, Z., Boucham, B., Benguediab, M., Tounsi, A., Khedher, K.M. and Salem, M.A. (2024). On the Thermomechanical Behavior of Laminated Composite Plates using different Micromechanical-based Models for Coefficients of Thermal Expansion (CTE). Journal of Applied and Computational Mechanics, 10(2), pp. 224-244. DOI: 10.22055/jacm.2023.44257.4191. [6] Slimani, O., Belabed, Z., Hammadi, F., Taibi, N. and Tounsi, A. (2021). A new shear deformation shell theory for free vibration analysis of FG sandwich shells. Structural Engineering and Mechanics, An Int'l Journal, 78(6), pp. 739-753. DOI: 10.12989/sem.2021.78.6.739. [7] Salom, C., Prolongo, M.G., Toribio, A., Martínez-Martínez, A.J., de Cárcer, I.A. and Prolongo, S.G. (2018). Mechanical properties and adhesive behaviour of epoxy-graphene nanocomposites. International Journal of Adhesion and Adhesives, 84, pp. 119-125. DOI: 10.1016/j.ijadhadh.2017.12.004. [8] Bahad ı r, E.B. and Sezgintürk, M.K. (2016). Applications of graphene in electrochemical sensing and biosensing. TrAC Trends in Analytical Chemistry, 76, pp. 1-14. DOI: 10.1016/j.trac.2015.07.008.

102

Made with FlippingBook Digital Publishing Software