PSI - Issue 69

Muhammad Asim et al. / Procedia Structural Integrity 69 (2025) 41–46

46

H. Y. Kim et al., “Texture and shape memory behavior of Ti-22Nb-6Ta alloy,” Acta Mater, vol. 54, no. 2, pp. 423–433, Jan. 2006, doi: 10.1016/j.actamat.2005.09.014. I. Zitouni, W. Abuzaid, M. Egilmez, and M. Alkhader, “Experimental assessment of the functional fatigue in biocompatible Ti67Zr19Nb11.5Sn2.5 shape memory alloy in the vicinity of drilled holes,” Journal of Materials Research and Technology, vol. 27, pp. 3016–3028, Nov. 2023, doi: 10.1016/j.jmrt.2023.10.143. E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi, and S. Hanada, “Effect of Heat Treatment and Sn Content on Superelasticity in Biocompatible TiNbSn Alloys,” 2002. J. Fu, H. Y. Kim, and S. Miyazaki, “Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy,” J Mech Behav Biomed Mater, vol. 65, pp. 716–723, Jan. 2017, doi: 10.1016/j.jmbbm.2016.09.036. R. A. Brockman et al., “Prediction and characterization of residual stresses from laser shock peening,” Int J Fatigue, vol. 36, no. 1, pp. 96–108, Mar. 2012, doi: 10.1016/j.ijfatigue.2011.08.011. H. Wang, E. L. Gurevich, and A. Ostendorf, “Femtosecond laser shock peening on the surface of NiTi shape memory alloy,” in Procedia CIRP, Elsevier B.V., 2020, pp. 910–913. doi: 10.1016/j.procir.2020.09.071.

Made with FlippingBook Ebook Creator