PSI - Issue 69

Dezhen Yang et al. / Procedia Structural Integrity 69 (2025) 97–104

104

References [1] Nuam, V.L., Zhang, H., Wang,Y.C., Xiong, Z.P., 2024. Role of retained austenite in advanced high-strength steel: ductility and toughness. Journal of Iron and Steel Research International 31(9), 2079-2089. [2] Ding, R., Yao, Y.K., Sun, B., Liu, G., He, J., Li, T., Wan, X., Dai, Z., Ponge, D., Raabe, D., Zhang, C., Godfrey, A., Miyamoto, G., Furuhara, T., Yang, Z.G., Van Der Zwaag, S., Chen, H., 2020. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels. Science Advances 6, 1430. [3] Sun. W.W., Wu. Y.X., Yang. S.C., Hutchinson. C.R., 2018. Advanced high strength steel (AHSS) development through chemical patterning of austenite. Scripta Materials 146, 60-63. [4] Yang, D.Z., Xiong, Z.P., Zhang, C., Feng, G.Z., Cheng, Z.F., Cheng, X.W., 2022. Evolution of microstructures and mechanical properties with tempering temperature of a pearlitic quenched and tempered steel. Journal of Iron and Steel Research International 29(9), 1393-1403. [5] Zhang, C., Xiong, Z.P., Yang, D.Z., X. Cheng, 2022. Heterogeneous quenching and partitioning from manganese partitioned pearlite: retained austenite modification and formability improvement. Acta Materials 235, 118060. [6] Zhang, C., Xiong, Z.P., Yang, D.Z., Dudko, V., Cheng, X.W., 2023. Chemical patterning enhanced by increasing quenching temperature in a medium-Mn steel. Journal of Iron and Steel Research International 30, 1916–1920. [7] Liu. G., Li, T., Yang, Z., Zhang, C., Li, J., Chen, H., 2020. On the role of chemical heterogeneity in phase transformations and mechanical behavior of flash annealed quenching & partitioning steels. Acta Materials 201, 266 277. [8] Xiong, Z., Yang, D., Zhang, H., Cheng, X., 2024. Carbide-free tempered martensite in Fe-C steels. Journal of Materials Science & Technology 179, 22-25. [9] Zhang, C., Xiong, Z., Li, Z., Cao, Y., Yang, D., Cheng, X., 2024. On the role of chemical heterogeneity in carbon diffusion during quenching and partitioning. Acta Materials 271, 119902. [10] Yang, D.Z., Zhang, C., Cheng, X.W., Z.P. Xiong, 2021. Lamellar pearlite as an initial microstructure for austenite reversion treatment. Journal of Materials Engineering and Performance 30, 1330-1339. [11] Yang, D.Z., Zhang, C., Pereloma, E., Xiong, Z.P., 2024. The abnormal carbon redistribution in lath martensite during tempering in Mn-patterned steels. Materials Characterization 210, 113841. [12] Ralik, N.A., Lorimer, G.l., Ridlel, N., 1974. An investigation of manganese partitioning during the austenite pearlite transformation using analltical electron microscopl. Acta Metallurgical 22(10), 1249-1258. [13] Ranjan, R., Beladi, H., Singh, S.B., Hodgson, P.D., 2015. Thermo-mechanical processing of TRIP-Aided steels. Metallurgical and Materials Transactions A 46(7), 3232-3247. [14] Wu, Y.X., Sun, W.W., Styles, M.J., Arlazarov, A., Hutchinson, C.R., 2018. Cementite coarsening during the tempering of Fe-C-Mn martensite. Acta Materials 159, 209-224.

Made with FlippingBook Ebook Creator