PSI - Issue 69
Alberto Coda et al. / Procedia Structural Integrity 69 (2025) 26–34
34
[10] Alaneme, K. K., & Okotete, E. A. (2016). Reconciling viability and cost-effective shape memory alloy options–A review of copper and iron based shape memory metallic systems. Engineering Science and Technology, an International Journal, 19(3), 1582-1592. [11] D. Golberg, Ya Xu, Y. Murakami, S. Morito, K. Otsuka, T. Ueki, H. Horikawa, Characteristic of Ti50Pd30Ni20 high-temperature shape memory alloy, Intermetallics 3 (1995) 35-46. [12] P.J.S. Buenconsejo, H.Y. Kim, H. Hosoda, S. Miyazaki, shape memory behavior of Ti-Ta and its potential as a high-temperature shape memory ally, Acta Materialia 57 (2009) 1068-1077. [13] Li, S., Cong, D., Xiong, W., Chen, Z., Zhang, X., Nie, Z., ... & Wang, Y. (2021). A low-cost Ni–Mn–Ti– B high-temperature shape memory alloy with extraordinary functional properties. ACS Applied Materials & Interfaces, 13(27), 31870-31879. [14] K. Chastaing, A. Denquin, R. Portier, P. Vermaut, High-temperature shape memory alloys based on the RuNb ystem, Materials Science and Engineering A 481-482 (2008) 702-706. [15] Zhao, G., Zou, H., Fang, D., Huang, C., Ye, Y., & Ye, X. (2023). Nanoprecipitates enhanced the yield strength and output work of (TiHfZr) 50 (NiCu) 50 high-entropy shape memory alloys. Journal of Alloys and Compounds, 965, 171504. [16] Tasaki, W., Arai, Y., Miyazaki, S., & Kim, H. Y. (2023). Development of Ni–Ti–Zr–Hf–(Nb, Ta) Multi Principal Element High-Temperature Shape Memory Alloys with High Cold Workability. Materials Transactions, 64(10), 2457-2465. [17] Lemke, J. N., Gallino, F., Cresci, M., & Coda, A. (2021). Achieving improved workability and competitive high temperature shape memory performance by Nb addition to Ni-Ti-Hf alloys. Scripta Materialia, 191, 161 166. [18] G.S. Firstov, Y.N. Koval, J. Van Humbeeck, P. Ochin, Martensitic transformation and shape memory effect in Ni3Ta: A novel high-temperature shape memory alloy, Materials Science and Engineering A 481-482 (2008) 590-593. [19] A. Rudajevova, J. Pospisil, Shape memory behaviour of a Ni3Ta alloy pre-deformed in compression, Materials Science and Engineering A 527 (2010) 2900-2905. [20] A. Rudajevova, Study of the thermal properties of a Ni3Ta shape memory alloy, International Journal of thermophysic 31 (2010) 378-387. [21] Yildiz, K. Thermally induced martensitic transformation and structural properties in Ni-Ta high temperature shape memory alloys. Eur. Phys. J. Plus 134, 11 (2019). https://doi.org/10.1140/epjp/i2019-12404 x [22] Yildiz K., Effects of Hf and Zr Additions on Microstructure, Phase Components and Martensitic Transformation Temperatures of Ni3Ta High-Temperature Shape Memory Alloys (2023) Journal of Materials Engineering and Performance, DOI: 10.1007/s11665-023-07920-7 [23] C.A. Biffi, F. Agresti, R. Casati, A. Tuissi, Ni3Ta High Temperature Shape Memory Alloys: Effect of B Addition on the Martensitic Transformation and Microstructure, Materials Today Proceedings. Proceedings of International Conference on Martensitic Transformations, ICOMAT-2014. 10.1016/j.matpr.2015.07.406. [24] Thaddeus B. Massalski, Binary alloy phase diagram, Second Edition, Vol. 3.
Made with FlippingBook Ebook Creator