PSI - Issue 69

R. Surki Aliabad et al. / Procedia Structural Integrity 69 (2025) 69–75

75

[10] X. Zhang, G. Miyamoto, Y. Toji, Y. Zhang, T. Furuhara, Role of cementite and retained austenite on austenite reversion from martensite and bainite in Fe-2Mn-1.5Si-0.3C alloy, Acta Mater 209 (2021). https://doi.org/10.1016/j.actamat.2021.116772. [11] X. Zhao, Y. Zhang, C. Shao, W. Hui, H. Dong, Thermal stability of retained austenite and mechanical properties of medium-Mn steel during tempering treatment, Journal of Iron and Steel Research International 24 (2017) 830–837. https://doi.org/10.1016/S1006 706X(17)30123-1. [12] J.J. Mueller, X. Hu, X. Sun, Y. Ren, K. Choi, E. Barker, J.G. Speer, D.K. Matlock, E. De Moor, Austenite formation and cementite dissolution during intercritical annealing of a medium-manganese steel from a martensitic condition, Mater Des 203 (2021). https://doi.org/10.1016/j.matdes.2021.109598. [13] X. Hu, J.J. Mueller, X. Sun, E. De Moor, J.G. Speer, D.K. Matlock, Y. Ren, The In Situ Observation of Phase Transformations During Intercritical Annealing of a Medium Manganese Advanced High Strength Steel by High Energy X-Ray Diffraction, Front Mater 8 (2021). https://doi.org/10.3389/fmats.2021.621784. [14] A. Mehrabi, H. Zurob, I.E. Benrabah, J.R. McDermid, Austenite formation in a medium-Mn steel during intercritical annealing via in situ high-energy X-ray diffraction, Journal of Materials Research and Technology 30 (2024) 2158–2167. https://doi.org/10.1016/j.jmrt.2024.03.241. [15] F. Huyan, J.Y. Yan, L. Höglund, J. Ågren, A. Borgenstam, Simulation of the Growth of Austenite from As-Quenched Martensite in Medium Mn Steels, Metall Mater Trans A Phys Metall Mater Sci 49 (2018) 1053–1060. https://doi.org/10.1007/s11661-018-4497-3. [16] X. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki, T. Furuhara, Orientation of austenite reverted from martensite in Fe-2Mn 1.5Si-0.3C alloy, Acta Mater 144 (2018) 601–612. https://doi.org/10.1016/j.actamat.2017.11.003. [17] X. Zhang, G. Miyamoto, T. Kaneshita, Y. Yoshida, Y. Toji, T. Furuhara, Growth mode of austenite during reversion from martensite in Fe-2Mn-1.5Si-0.3C alloy: A transition in kinetics and morphology, Acta Mater 154 (2018) 1–13. https://doi.org/10.1016/j.actamat.2018.05.035. [18] R. Surki Aliabad, S. Sadeghpour, P. Karjalainen, J. Kömi, V. Javaheri, On the Growth Kinetics of Lamellar and Blocky Austenite During Intercritical Annealing of Hot-Rolled Medium Manganese Steel: Thermodynamic and Diffusion-Controlled Transformation Simulations, in: Linköping Electronic Conference Proceedings 212, 2025. https://doi.org/10.3384/ecp212.028. [19] Y. Hirotsu, S. Nagakura, Crystal structure and morphology of the carbide precipitated from martensitic high carbon steel during the first stage of tempering, Acta Metallurgica 20 (1972) 645–655. https://doi.org/10.1016/0001-6160(72)90020-X. [20] N.H. Van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. Van Der Zwaag, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater 53 (2005) 5439–5447. https://doi.org/10.1016/j.actamat.2005.08.017. [21] H.F. Xu, J. Zhao, W. Quan, J. Shi) Cun, Y. Wang, J. Li, H. Dong, Tempering Effects on the Stability of Retained Austenite and Mechanical Properties in a Medium Manganese Steel, 2012. https://doi.org/https://doi.org/10.2355/isijinternational.52.868. [22] Y. Takahama, M.J. Santofimia, M.G. Mecozzi, L. Zhao, J. Sietsma, Phase field simulation of the carbon redistribution during the quenching and partitioning process in a low-carbon steel, Acta Mater 60 (2012) 2916–2926. https://doi.org/10.1016/j.actamat.2012.01.055. [23] J.R. McDermid, H.S. Zurob, Y. Bian, Stability of retained austenite in high-Al, low-Si TRIP-assisted steels processed via continuous galvanizing heat treatments, in: Metall Mater Trans A Phys Metall Mater Sci, 2011: pp. 3627–3637. https://doi.org/10.1007/s11661 011-0678-z. [24] C.F. Holder, R.E. Schaak, Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials, ACS Nano 13 (2019) 7359– 7365. https://doi.org/10.1021/acsnano.9b05157. [25] G.G. Ribamar, G. Miyamoto, T. Furuhara, J.D. Escobar, J.A. Ávila, E. Maawad, N. Schell, J.P. Oliveira, H. Goldenstein, On the Evolution of Austenite During Tempering in High-Carbon High-Silicon Bearing Steel by High Energy X-Ray Diffraction, Metall Mater Trans A Phys Metall Mater Sci 55 (2024) 93–100. https://doi.org/10.1007/s11661-023-07229-z. [26] M. Enomoto, K. Hayashi, Modeling the growth of austenite in association with cementite during continuous heating in low-carbon martensite, J Mater Sci 53 (2018) 6911–6921. https://doi.org/10.1007/s10853-018-2020-2.

Made with FlippingBook Ebook Creator