Issue 69

D. Leonetti et alii, Frattura ed Integrità Strutturale, 69 (2024) 142-153; DOI: 10.3221/IGF-ESIS.69.11

D ATA AVAILABILITY

T T T

he data are available on request.

D ECLARATION OF COMPETING INTEREST

he authors declare no competing interest.

A CKNOWLEDGEMENT

he research contribution of B. Schotsman was carried out under project number T18014 in the framework of the Partnership Program of the Materials innovation institute M2i (www.m2i.nl). Robert Jan Meijer, at the University of Twente, Department of Mechanics of Solids, Surfaces & Systems is acknowledged for the access and use of the optical profilometer. The authors would like to thank Voestalpine Track Solutions Netherlands for providing the rail steel for this research.

R EFERENCES

[1] Zerbst, U., Lundén, R., Edel, K. O. and Smith, R. A. (2009). Introduction to the damage tolerance behaviour of railway rails–a review. Engineering fracture mechanics, 76(17), pp. 2563-2601. DOI: 10.1016/j.engfracmech.2009.09.003 [2] Pucillo, G. P., De Iorio, A., Rossi, S. and Testa, M. (2018). On the effects of the USP on the lateral resistance of ballasted railway tracks. In ASME/IEEE Joint Rail Conference, 50978, p. V001T01A017. American Society of Mechanical Engineers. DOI: 10.1115/JRC2018-6204 [3] Christoforou, P., Fletcher, D. I. and Lewis, R. (2019). Benchmarking of premium rail material wear. Wear, 436, 202990.. [4] Kapoor, A. (1997). Wear by plastic ratchetting. Wear, 212(1), pp. 119-130. DOI: 10.1016/j.wear.2019.202990 [5] Zerbst, U., Mädler, K. and Hintze, H. (2005). Fracture mechanics in railway applications––an overview. Engineering fracture mechanics, 72(2), pp. 163-194. DOI: 10.1016/j.engfracmech.2003.11.010 [6] Pucillo, G. P. (2022). The effects of the cold expansion degree on the fatigue crack growth rate in rail steel. International Journal of Fatigue, 164, 107130. DOI: 10.1016/j.ijfatigue.2022.107130 [7] Olzak, M., Stupnicki, J. and Wojcik, R. (1991). Investigation of crack propagation during contact by a finite element method. Wear, 146(2), pp. 229-240. DOI: 10.1016/0043-1648(91)90065-3 [8] Bogdanski, S., Olzak, M. and Stupnicki, J. (1996). Numerical stress analysis of rail rolling contact fatigue cracks. Wear, 191(1-2), pp. 14-24. DOI: 10.1016/0043-1648(95)06685-3 [9] Trollé, B., Gravouil, A., Baietto, M. C. and Nguyen-Tajan, T. M. L. (2012). Optimization of a stabilized X-FEM formulation for frictional cracks. Finite elements in analysis and design, 59, pp. 18-27. DOI: 10.1016/j.finel.2012.04.010 [10] Pucillo, G. P., Carrabs, A., Cuomo, S., Elliott, A. and Meo, M. (2021). Cold expansion of rail-end-bolt holes: Finite element predictions and experimental validation by DIC and strain gauges. International Journal of Fatigue, 149, 106275. DOI: 10.1016/j.ijfatigue.2021.106275 [11] Leonetti, D. and Vantadori, S. (2022). Weight functions for stress intensity factor and T-stress derived for an inclined edge crack in a finite width plate. International Journal of Fatigue, 165, 107170. DOI: 10.1016/j.ijfatigue.2022.107170 [12] Leonetti, D. and Vantadori, S. (2022). On the growth of rolling contact fatigue cracks using weight functions. Procedia Structural Integrity, 39, pp. 9-19. DOI: 10.1016/j.prostr.2022.03.067 [13] Rosenfield, A. R., Hahn, G. T. and Embury, J. D. (1972). Fracture of steels containing pearlite. Metallurgical and Materials Transactions B, 3, pp. 2797-2804. DOI: 10.1007/BF02652845

152

Made with FlippingBook Digital Publishing Software