PSI - Issue 68
A. Barabi et al. / Procedia Structural Integrity 68 (2025) 285–291 A. Barabi / Structural Integrity Procedia 00 (2025) 000–000
291
7
collaboration of Carlo Baillargeon, Isabelle Montplaisir, and Lydia Damphousse. The authors have no known competing financial interests or personal relationships that could have influenced the work described in this paper. Declaration of generative AI and AI-assisted technologies in the writing process In preparing this paper, the authors used ChatGPT to improve the language and readability of the paper. The authors then reviewed and edited the text as needed and take full responsibility for the content of the published article. References Asadipoor, M., Pourkamali Anaraki, A., Kadkhodapour, J., Sharifi, S.M.H., Barnoush, A., 2020. Macro- and microscale investigations of hydrogen embrittlement in X70 pipeline steel by in-situ and ex-situ hydrogen charging tensile tests and in-situ electrochemical micro cantilever bending test. Mater. Sci. Eng. A 772. https://doi.org/10.1016/j.msea.2019.138762 ASTM E647, A.S., 2016. ASTM E647 - Standard Test Method for Measurement of Fatigue Crack Growth Rates. ASTM B. Stand. 03, 1–49. https://doi.org/10.1520/E0647-15E01.2 Bai, Y.H., Zhu, Z.J., Zhang, H., Zhang, Q.H., Du, H.W., Wang, J.Y., Cao, F.H., 2023. In-situ radial pH monitoring inside the crevice of stainless steel combined with potentiometric scanning electrochemical microscopy. Electrochim. Acta 467. https://doi.org/10.1016/j.electacta.2023.143109 Barabi, A., Heyraud, H., Deschênes, P.-A., Lacasse, R., Thibault, D., Trudeau, M., Brochu, M., 2024. The interplay of load frequency and passivation kinetics in corrosion fatigue crack growth of 13Cr-4Ni martensitic stainless steel. Eng. Fract. Mech. Under revi. Bogar, F.D., 1974. Solution Chemistry in Crevices on Fe-Cr Binary Alloys. Natl. Tech. Inf. Serv. Canada Energy Regulator, 2021. Provincial territorial energy profiles-Quebec [WWW Document]. URL https://www.cer-rec.gc.ca/en/data analysis/energy-markets/provincial-territorial-energy-profiles/pro Cooper, K.R., Kelly, R.G., 2007. Crack tip chemistry and electrochemistry of environmental cracks in AA 7050. Corros. Sci. https://doi.org/10.1016/j.corsci.2006.12.001 Donahue, J.R., Lass, A.B., Burns, J.T., 2017. The interaction of corrosion fatigue and stress-corrosion cracking in a precipitation-hardened martensitic stainless steel. npj Mater. Degrad. 1. https://doi.org/10.1038/s41529-017-0013-2 Fullenwider, M.A., 1983. Hydrogen entry and action in metals. Pergamon. He, J., Chen, L., Tao, X., Antonov, S., Zhong, Y., Su, Y., 2020. Hydrogen embrittlement behavior of 13Cr-5Ni-2Mo supermartensitic stainless steel. Corros. Sci. 176. https://doi.org/10.1016/j.corsci.2020.109046 Karlberg, G., Wranglen, G., 1971. On the mechanism of crevice corrosion of stainless Cr steels. Corros. Sci. 11, 499–510. https://doi.org/10.1016/S0010-938X(71)80017-3 Kovalov, D., Fekete, B., Engelhardt, G.R., Macdonald, D.D., 2019. Prediction of corrosion fatigue crack growth rate in alloys. Part II: effect of electrochemical potential, NaCl concentration, and temperature on crack propagation in AA2024-T351. Corros. Sci. 152, 130–139. https://doi.org/10.1016/j.corsci.2019.03.005 Kovalov, D., Fekete, B., Engelhardt, G.R., Macdonald, D.D., 2018. Prediction of corrosion fatigue crack growth rate in alloys. Part I: General corrosion fatigue model for aero-space aluminum alloys. Corros. Sci. 141, 22–29. https://doi.org/10.1016/j.corsci.2018.06.034 Li, Y., Liu, Z., Fan, E., Cui, Z., Zhao, J., 2020. The effect of crack tip environment on crack growth behaviour of a low alloy steel at cathodic potentials in artificial seawater. J. Mater. Sci. Technol. 54, 119–131. https://doi.org/10.1016/j.jmst.2020.04.034 Matsumura, K., Nishimoto, M., Muto, I., Sugawara, Y., 2022. Sudden pH and Cl − Concentration Changes during the Crevice Corrosion of Type 430 Stainless Steel. J. Electrochem. Soc. 169, 101506. https://doi.org/10.1149/1945-7111/ac9bda Turnbull, A., 2001. Modeling of the chemistry and electrochemistry in cracks - A review. Corrosion 57, 175–188. https://doi.org/10.5006/1.3290342 Turnbull, A, 1983. A theoretical evaluation of the oxygen concentration in a corrosion-fatigue crack. ASTM Int. 351–366. Turnbull, A., 1983. The solution composition and electrode potential in pits, crevices and cracks. Corros. Sci. 23, 833–870. https://doi.org/10.1016/0010-938X(83)90014-8
Made with FlippingBook - Online Brochure Maker