PSI - Issue 68

A. Jiménez et al. / Procedia Structural Integrity 68 (2025) 603–609 Adriano Jiménez et al. / Structural Integrity Procedia 00 (2025) 000–000

609

7

Furthermore, while the ultrasound and mechanical testing results indicated comparable elastic properties in different directions, no direct correlation was established between the two testing methods. Therefore, further analysis of the obtained data is necessary to develop a non-destructive quality control method for 3D-printed ceramics. In conclusion, while LDM provides a feasible method for fabricating complex ceramic structures, the anisotropy induced by the printing process poses challenges for the mechanical performance of these materials. Future work should aim at optimizing printing parameters and improving material homogeneity to reduce defects, thus enhancing the mechanical properties of ceramic components manufactured via LDM. 5. Acknowledgment This work has been supported by the Project PAIDI 2021 / PROYEXCEL_00532 funded by Junta de Andalucía: Consejería de Universidad, Investigación e Innovación. The authors gratefully acknowledge Fablab Sevilla, where a relevant part of this research took place and Pedro Vaca Rodríguez for the help in the field of robotics. Abdelkader, M., Petrik, S., Nestler, D., & Fijalkowski, M. (2024). Ceramics 3D Printing: A Comprehensive Overview and Applications, with Brief Insights into Industry and Market. In Ceramics (Vol. 7, Issue 1, pp. 68–85). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ceramics7010006 Chaari, M. Z., Abdelfatah, M., & Loreno, C. (2022). A trial to convert a polymer FDM 3D printer to handle clay materials. SN Applied Sciences, 4(3). https://doi.org/10.1007/s42452-022-04937-w Chen, L., Casas, G., Kasirer, C., & Van Mele, T. (2023). COMPAS: Softwarelösung für komplexe Bauprojekte. In Bautechnik (Vol. 100, Issue 8, pp. 476–482). Ernst und Sohn. https://doi.org/10.1002/bate.202300078 Cruz, P. J. S., Camões, A., Figueiredo, B., Ribeiro, M. J., & Renault, J. (2020). Additive manufacturing effect on the mechanical behaviour of architectural stoneware bricks. Construction and Building Materials, 238. https://doi.org/10.1016/j.conbuildmat.2019.117690 Estévez, A. T., & Abdallah, Y. K. (2022). The New Standard Is Biodigital: Durable and Elastic 3D-Printed Biodigital Clay Bricks. Biomimetics, 7(4). https://doi.org/10.3390/biomimetics7040159 Finke, B., Hesselbach, J., Schütt, A., Tidau, M., Hampel, B., Schilling, M., Kwade, A., & Schilde, C. (2020). Influence of formulation parameters on the freeform extrusion process of ceramic pastes and resulting product properties. Additive Manufacturing, 32(November 2019), 101005. https://doi.org/10.1016/j.addma.2019.101005 Lamnini, S., Elsayed, H., Lakhdar, Y., Baino, F., Smeacetto, F., & Bernardo, E. (2022). Robocasting of advanced ceramics: ink optimization and protocol to predict the printing parameters - A review. In Heliyon (Vol. 8, Issue 9). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2022.e10651 Li, Z. L., Zhou, S., Saiz, E., & Malik, R. (2024). Ink formulation in direct ink writing of ceramics: A meta-analysis. In Journal of the European Ceramic Society. Elsevier Ltd. https://doi.org/10.1016/j.jeurceramsoc.2024.05.014 6. Bibliography

Made with FlippingBook - Online Brochure Maker