PSI - Issue 68
Emanuele Vincenzo Arcieri et al. / Procedia Structural Integrity 68 (2025) 1324–1328 E.V. Arcieri et al. / Structural Integrity Procedia 00 (2025) 000–000
1328
5
Frank, L., Weihe, S., 2023. Component Tests and Numerical Investigations to Determine the Lifetime and Failure Behavior of End Stage Blades. Procedia Structural Integrity 46, 3-9. Frankel, P.G., Withers, P.J., Preuss, M., Wang, H.-T., Tong, J., Rugg, D., 2012. Residual Stress Fields After FOD Impact on Flat and Aerofoil Shaped Leading Edges. Mechanics of Materials 55, 130-145. Grbovic, A., Solob, A., Bozic, Z., Sedmak, S., Sedmak, A., 2024. Fatigue Life of Damaged Wing-Fuselage Fitting. Procedia Structural Integrity 58, 42-47. Huang, P., Yin, H., McNaulty, D., Yan, W., 2022. A Damage Tolerance Approach for Structural Integrity of Truck Trailers. Engineering Failure Analysis 136, 106197. Javadi, M., Tajdari, M., Experimental Investigation of the Friction Coefficient Between Aluminium and Steel. Materials Science Poland 24. Kastratović, G., Grbović, A., Sedmak, A., Božić, Ž., Sedmak, S., 2021. Composite Material Selection for Aircraft Structures Based on Experimental and Numerical Evaluation of Mechanical Properties. Procedia Structural Integrity 31, 127-133. Kim, J.-C., Cheong, S.-K., Naguchi, H., 2013. Evolution of Residual Stress Redistribution Associated with Localized Surface Microcracking in Shot-Peened Medium-Carbon Steel During Fatigue Test. International Journal of Fatigue 55, 147-157. Mall, S., Hamrick, J.L., Nicholas, T., 2001. High Cycle Fatigue Behavior of Ti–6Al–4V with Simulated Foreign Object Damage. Mechanics of Materials 33, 679-692. Martinez, C.M., Eylon, D., Nicholas, T., Thompson, S.R., Ruschau, J.J., Birkbeck, J., Porter, W.J., 2002. Effects of ballistic impact damage on fatigue crack initiation in Ti-6Al-4V simulated engine blades, Materials Science Engineering A 325, 465–477. Milovanović, N., Sedmak, A., Arsic, M., Sedmak, S.A., Božić, Ž., 2020. Structural Integrity and Life Assessment of Rotating Equipment. Engineering Failure Analysis 113, 104561. Nicholas, T., 2006. Foreign Object Damage. In: High Cycle Fatigue, Elsevier Science Ltd, Oxford. Nowell, D., Duó, P., Stewart, I.F., 2003. Prediction of Fatigue Performance in Gas Turbine Blades after Foreign Object Damage. International Journal of Fatigue 25 (9–11), 963-969. Oakley,S., Nowell, D., 2007. Prediction of the Combined High-and Low-Cycle Fatigue Performance of Gas Turbine Blades After Foreign Object Damage. International. Journal of Fatigue 29, 69–80. Peters, J.O., Ritchie, R.O., 2000. Influence of Foreign-Object Damage on Crack Initiation and Early Crack Growth During High-Cycle Fatigue of Ti–6Al–4V. Engineering Fracture Mechanics 67(3), 193-207. Ribeiro, V., Correia, J., Mourão,A., Lesiuk, G., Gonçalves, A., De Jesus, A., Berto, F., 2022. Fatigue Crack Growth Modelling by Means of the Strain Energy Density-Based Huffman Model Considering the Residual Stress Effect. Engineering Failure Analysis 140, 106543. Ruschau, J., Thompson, S.R., Nicholas, T., 2003. High Cycle Fatigue Limit Stresses for Airfoils Subjected to Foreign Object Damage. International Journal of Fatigue 25 (9–11), 955-962 Zhang, H., Hu, D., Ye, X., Chen, X.m He, Y., Ma, X., 2023. Prediction on Aeroengine Blade Foreign Object Damage Validated by Air Gun Tests. Engineering Failure Analysis 143, 106919.
Made with FlippingBook - Online Brochure Maker