PSI - Issue 68
Nhan T. Nguyen et al. / Procedia Structural Integrity 68 (2025) 91–98 N.T. Nguyen et al. / Structural Integrity Procedia 00 (2025) 000–000
98
8
Acknowledgement Support from the Australian Research Council through projects LP200100038 (Karakus, Nguyen, Bui) and DP240101206 (Nguyen, Karakus) is gratefully acknowledged. References Bažant Zdeněk, P., 1996. Analysis of Work-of-Fracture Method for Measuring Fracture Energy of Concrete. Journal of Engineering Mechanics 122 , 138-144. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:2(138). Bui, H.H., Nguyen, T.V., Nguyen, G.D., 2023. GeoXPM [ver 0.26.1]. Department of Civil Engineering, Faculty of Engineering, Monash University, Clayton VIC 3800. Available: https://geoxpm.com/. Cao, P., Zhou, T., Zhu, J., 2023. Strain rate effect on mixed mode I/II fracture toughness of sandstone and its micromechanism. International Journal of Rock Mechanics and Mining Sciences 165 , 105379. https://doi.org/10.1016/j.ijrmms.2023.105379. Chen, L., Zhang, G., Zou, Z., Guo, Y., Zheng, X., 2021. The effect of fracture growth rate on fracture process zone development in quasi-brittle rock. Engineering Fracture Mechanics 258 , 108086. https://doi.org/10.1016/j.engfracmech.2021.108086. Cho, S.H., Ogata, Y., Kaneko, K., 2003. Strain-rate dependency of the dynamic tensile strength of rock. International Journal of Rock Mechanics and Mining Sciences 40 , 763-777. https://doi.org/10.1016/S1365-1609(03)00072-8. Du, X., Jin, L., Ma, G., 2014. Numerical simulation of dynamic tensile-failure of concrete at meso-scale. International Journal of Impact Engineering 66 , 5-17. https://doi.org/10.1016/j.ijimpeng.2013.12.005. Dutler, N., Nejati, M., Valley, B., Amann, F., Molinari, G., 2018. On the link between fracture toughness, tensile strength, and fracture process zone in anisotropic rocks. Engineering Fracture Mechanics 201 , 56-79. https://doi.org/10.1016/j.engfracmech.2018.08.017. Ghamgosar, M., Erarslan, N., 2016. Experimental and Numerical Studies on Development of Fracture Process Zone (FPZ) in Rocks under Cyclic and Static Loadings. Rock Mechanics and Rock Engineering 49 , 893-908. https://doi.org/10.1007/s00603-015-0793-z. Houlsby, G.T., Puzrin, A.M., 2000. A thermomechanical framework for constitutive models for rate-independent dissipative materials. International Journal of Plasticity 16 , 1017-1047. https://doi.org/10.1016/S0749-6419(99)00073-X. Houlsby, G.T., Puzrin, A.M., 2006. Principles of Hyperplasticity - An Approach to Plasticity Theory Based on Thermodynamic Principles, Springer London. https://doi.org/10.1007/978-1-84628-240-9. Jin, L., Yu, W., Du, X., Zhang, S., Li, D., 2019. Meso-scale modelling of the size effect on dynamic compressive failure of concrete under different strain rates. International Journal of Impact Engineering 125 , 1-12. https://doi.org/10.1016/j.ijimpeng.2018.10.011. Landis, E.N., Nagy, E.N., Keane, D.T., 2003. Microstructure and fracture in three dimensions. Engineering Fracture Mechanics 70 , 911-925. https://doi.org/10.1016/S0013-7944(02)00157-1. Lian, H., Sun, X., Lian, Y., Xie, L., Yu, Z., 2023. Strain rate effect on the fracture parameters of concrete three-point bending beam with a small span-to-height ratio. Engineering Fracture Mechanics 281 , 109133. https://doi.org/10.1016/j.engfracmech.2023.109133. Meng, F., Wong, L.N.Y., Guo, T., 2022. Frictional behavior and micro-damage characteristics of rough granite fractures. Tectonophysics 842 , 229589. https://doi.org/10.1016/j.tecto.2022.229589. Miao, S., Liu, Z., Zhao, X., Ma, L., Zheng, Y., Xia, D., 2024. Plastic and damage energy dissipation characteristics and damage evolution of Beishan granite under triaxial cyclic loading. International Journal of Rock Mechanics and Mining Sciences 174 , 105644. https://doi.org/10.1016/j.ijrmms.2024.105644. Ngo, T.T., Park, J.K., Kim, D.J., 2019. Loading rate effect on crack velocity in ultra-high-performance fiber-reinforced concrete. Construction and Building Materials 197 , 548-558. https://doi.org/10.1016/j.conbuildmat.2018.11.241. Nguyen, N.T., Nguyen, G.D., Karakus, M., Bui, H.H., Phan, D.G., 2024. Controlling behaviour of constitutive models for rocks using energy dissipations. International Journal of Plasticity 184, 104196. Perzyna, P., 1966. Fundamental Problems in Viscoplasticity. In: CHERNYI, G. G., DRYDEN, H. L., GERMAIN, P., HOWARTH, L., OLSZAK, W., PRAGER, W., PROBSTEIN, R. F. & ZIEGLER, H. (eds.) Advances in Applied Mechanics. Elsevier. Qiao, L., Chen, L., Dasgupta, G., Li, Q., Li, Y., 2019. Surface Characterization and Frictional Energy Dissipation Characteristics of Deep Granite Under High Stress Conditions. Rock Mechanics and Rock Engineering 52 , 1577-1589. httpds://doi.org.10.1007/s00603-018-1510-5. Wang, Y., Bui, H.H., Nguyen, G.D., Ranjith, P.G., 2019. A new SPH-based continuum framework with an embedded fracture process zone for modelling rock fracture. International Journal of Solids and Structures 159 , 40-57. https://doi.org/10.1016/j.ijsolstr.2018.09.019. Xing, Y., Huang, B., Ning, E., Zhao, L., Jin, F., 2020. Quasi-static loading rate effects on fracture process zone development of mixed-mode (I-II) fractures in rock-like materials. Engineering Fracture Mechanics 240 , 107365. https://doi.org/10.1016/j.engfracmech.2020.107365. Xu, R., Zhang, S., Li, Z., Yan, X., 2023. Experimental investigation of the strain rate effect on crack initiation and crack damage thresholds of hard rock under quasi-static compression. Acta Geotechnica 18 , 903-920. https://doi.org/10.1007/s11440-022-01631-4. Yan, Z., Dai, F., Liu, Y., Du, H., 2020. Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading. Bulletin of Engineering Geology and the Environment 79 , 5535-5552. https://doi.org/10.1007/s10064-020-01914-8. Zhang, J.-Z., Zhou, X.-P., Zhu, J.-Y., Xian, C., Wang, Y.-T., 2018. Quasi-static fracturing in double-flawed specimens under uniaxial loading: the role of strain rate. International Journal of Fracture 211 , 75-102. https://doi.org/10.1007/s10704-018-0277-8. Zhang, J.-Z., Zhou, X.-P., 2022. Fracture process zone (FPZ) in quasi-brittle materials: Review and new insights from flawed granite subjected to uniaxial stress. Engineering Fracture Mechanics 274 , 108795. https://doi.org/10.1016/j.engfracmech.2022.108795.
Made with FlippingBook - Online Brochure Maker